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Abstract: We present a further simplified derivation of a “truly elementary” proof of Bertrand’s theorem, which predicts 
the exponents in central power-law potentials that produce closed orbits. 

INTRODUCTION 

Bertrand’s theorem1 proves that for a central force power-law potential energy V(r) ~ rn, closed orbits exist only 
for n = ─1 and +2.  An elegant “truly elementary” proof of the theorem was recently published by S. Chin.2 Here we 
streamline the theorem’s proof further, making it even more elementary.   

We review criteria for an orbit to be closed, outline a strategy for determining which values of n give a closed 
orbit, then consider cases of negative and positive n.  To make this note self-contained, we develop an argument along 
the lines of Chin’s, but indicate where we introduce an additional simplification.  For comparison, Chin’s argument 
we replace is presented in the Appendix. 

CLOSED ORBITS: CRITERIA, STRATEGY, AND CASES 

Closed Orbit Criteria and Strategy 

In central force motion, the force and potential energy depend only on the distance between the force center and 
the particle, suggesting the use of spherical coordinates (r, θ, φ). Because angular momentum is conserved, the orbit 
may be mapped in the θ = π/2 plane, and the trajectory specified as r = r(φ).  In a closed orbit, let r2 be the maximum 
and r1 be the minimum values of r.  The angle φA between them, the apsidal angle, is one-half the spatial angular 
period for the radial oscillation r2 → r1 → r2 (Fig. 1).  



 
FIGURE 1. For the curve (red) the apsidal angle φA is 𝜋/4. 

 
For an orbit to close in an integral number M revolutions so that r(φ + 2πM) = r(φ), an integral number N periods 

of the  radial oscillation must fit into 2πM. Thus 2φAN = 2πM, or 
 

 𝜑 =  𝜋/𝑅 (1) 
 

where R is a rational number. 
An effective way to predict a particle’s orbit in a central potential employs the conservation of energy and angular 

momentum.3 Since the particle of reduced mass m moves with velocity 
 

 𝒗 =  �̇�𝒓ො + (𝑟𝜑)̇ 𝝋ෝ     (2) 
 

(overdots denote time derivatives), the angular momentum is 
 

 𝑳 =  (𝑚𝑟ଶ�̇�)𝒛ො.   (3) 
 

Using Eqs. (2) and (3), the mechanical energy E is 
 

 𝐸 =
ଵ

ଶ
𝑚�̇�ଶ +  

మ

ଶమ + 𝑉(𝑟).  (4) 

 
The L2/2mr2 contribution to the kinetic energy behaves mathematically like a repulsive 1/r2 potential energy; it is 
sometimes called the “centrifugal potential.”  Together with the potential energy V(r) they make the effective potential 
Ve(r): 

 

 𝑉(𝑟) ≡
మ

ଶమ + 𝑉(𝑟).  (5) 

 

Solving Eq. (5) for �̇� =  
ௗ

ௗఝ
�̇�, again using Eq. (3) and introducing 

 
 u = 1/r,   (6) 
 
Eq. (5) yields an integration for φ = φ(r), 
 



 𝜑(𝑟) =  ±ඥ𝛽 ∫
ௗ௨

ඥாି ఉ௨మି(௨షభ)
 (7)  

 
where β ≡ L2/2m.  After integrating, φ = φ(r) is inverted to obtain r = r(φ), and closure (or not) of the orbit may be 
judged directly by seeing whether r(φ + 2πM) = r(φ) for integer M.  For n = ─1 (planetary orbits or Rutherford 
scattering), inverting φ(r) produces a conic section α/r = 1 + ϵ cos φ.  For n = 2 (mass on a radial spring), inverting 
φ(r) gives (α/r)2 = 1 ─ sin(2φ).  Clearly, an elegant proof of Bertrand’s theorem would be straightforward if the 
antiderivative of the integrand in Eq. (7) presented itself as a function of n for any potential of the form V(u─1) ~ u─n.  
Unfortunately, φ(r) as a function of arbitrary n is not forthcoming.  Another approach must be attempted.   

  Solving Eq. (4) for �̇� =  
ௗ

ௗఝ
�̇� and using Eq. (3) to replace angular velocity with angular momentum, so that  

ௗ

ௗఝ
�̇� =  

ௗ

ௗఝ



మ, leads to 

 

 
మ

ଶర ቀ
ௗ

ௗఝ
ቁ

ଶ

= 𝐸 − 𝑉(𝑟). (8) 

 
Recalling u = 1/r and, following Chin, defining 
 
 L2/m ≡ m*, (9) 

 
Eq. (8) may be recast as 
 

 𝐸 =
ଵ

ଶ
𝑚∗ ቀ

ௗ௨

ௗఝ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑢ଶ + 𝑉(𝑢ିଵ).   (10) 

 
The last two terms are the effective potential in terms of u, 
 
  𝑉(𝑟) =  𝑉(𝑢ିଵ) ≡  

ଵ

ଶ
𝑚∗𝑢ଶ + 𝑉(𝑢ିଵ).  (11) 

  
In u-space Eq. (10) has the same mathematical form as the kinetic energy plus potential energy of a simple harmonic 

oscillator—plus a perturbation, 𝑉(𝑢ିଵ).  If 𝑉(𝑢ିଵ), like 
ଵ

ଶ
𝑚∗𝑢ଶalso happens to be quadratic in u, then the entire Ve(r) 

is quadratic in u takes the form 
 
 𝑉(𝑟) =

ଵ

ଶ
𝛾𝑢ଶ (12) 

 
for some constant γ.  Should that occur, then u ~ cos(ωφ) where ω2 = γ/m*. The criteria for a closed orbit, Eq. (1), 
becomes 
 
  𝜑 =  

గ

ఠ
   (13) 

 
where, according to Eq. (1), ω must be a rational number.  Of course, V(r) is not always quadratic in u.  But if a Taylor 
series expansion of the effective potential is dominated by the quadratic term, then the argument about γ = m*ω2 holds.   

As noted, the potential V can be seen as a perturbation.  Since we are dealing with bound orbits, closed or not, let 
us suppose the system that V perturbs is a circular orbit of radius ro = 1/uo.  The effective potential therefore has a 
minimum at this radius (see Fig. 2). Let us expand the effective potential Ve(u) in a Taylor series about u = uo: 
 
 𝑉(𝑢) =  𝑉(𝑢) + (𝑢 − 𝑢) ቂ

ௗ

ௗ௨
ቃ

௨

+  
ଵ

ଶ!
(𝑢 − 𝑢)ଶ ቂ

ௗమ

ௗ௨మ ቃ
௨ 

+ ⋯ .  (14) 

 



                   
FIGURE 2.  The 1/r2 (top red) curve is the angular momentum’s contribution to Ve(r); the bottom (green) curve illustrates an 

attractive potential, in this instance V(r) ~ −1/r; and the curve (yellow) with the minimum at ro represents the effective potential 
Ve(r). 

 
With Ve(u) a minimum at uo, the first derivative term vanishes. Denote Ve(uo) ≡ Eo, u ─ uo ≡ ε, and ቂ

ௗమ

ௗ௨మ ቃ
௨ 

≡ Γ. The 

Taylor series may be written 
 

 𝑉(𝑢) =  𝐸  +  
ଵ

ଶ
𝜀ଶΓ + ⋯ . (15) 

Now Eq. (10) may be restated 
 

 𝐸 −  𝐸 =
ଵ

ଶ
𝑚∗ ቀ

ௗఌ

ௗఝ
ቁ

ଶ

+  
ଵ

ଶ
Γ𝜀ଶ + ⋯.  (16) 

 
By examining Γ, which depends on the second derivative of Ve, let us see what constraints it imposes on power-law 
potentials in producing closed orbits.  The first derivative of Ve with respect to u is, in terms of V(r), 

 

 
ௗ

ௗ௨
=  𝑚∗𝑢 +  

ௗ

ௗ

ௗ

ௗ௨
=  𝑚∗𝑢 −  

ଵ

௨మ

ௗ

ௗ
 ;  (17) 

  
and thus the second derivative becomes 

 

 
ௗమ

ௗ௨మ =  𝑚∗ +  
ଶ

௨య

ௗ

ௗ
+  

ଵ

௨ర

ௗమ

ௗమ.  (18) 

 
At u = uo we obtain 

 

 


∗ =  
ଷᇲ()ାᇲᇲ()

ᇱ()
 .  (19) 

 
For this Γ to be the γ = m*ω2 of Eq. (12), Γ/m* must be a positive real number.  The question now becomes, what 
potentials V(r) allow this to happen?  Define the function 

 

 𝑓(𝑟) =  
ଷᇲ()ାᇲᇲ()

ᇱ()
 .  (20) 

 
Since f (ro) =  Γ/m* = const. > 0.  Therefore for 𝑟 ≈ 𝑟 we can say that f (r) ≈ C = const. > 0.  Then Eq, (20) gives 

 
 3𝑉ᇱ + 𝑟𝑉ᇱᇱ = 𝐶𝑉′. (21) 

or 

 (𝐶 − 3)𝑉′ = 𝑟
ௗ

ௗ
  (22) 



which integrates to 
 

 ln 𝑉′ = (C ─ 3)ln r + ln k (23) 
 

or dV/dr = kr C─3 where k = const. Letting n = C ─ 2, a second integration yields 
 

 𝑉(𝑟) =  



𝑟 . (24) 

 
Recalling that Γ/m* = C = n + 2, and assuming that further terms in the Taylor series may be neglected, we have our 
simple harmonic oscillator’s angular frequency, 

 

 𝜔 =  ට


∗ =  √𝑛 + 2.  (25) 

 
The criteria for the orbit to be closed, Eq. (1), requires √𝑛 + 2 to be a rational number.  Clearly n = ─1 and n = +2 
make ω a rational number, but what other values of n might produce closed orbits?  Why not n = 7 or 23 or 34?  Even 
though these choices make √𝑛 + 2  an integer, evidently the rationality of √𝑛 + 2  is a necessary but not sufficient 
condition for the orbit to be closed, because the potential V(r) ~ rn is also constrained by Newtonian mechanics. To 
find values of n that work, let us divide the real numbers into two groups, n < 0, and n > 0, and see how the principles 
of mechanics constrain the values of n that make √𝑛 + 2  rational.  

The n < 0 Case 

For n < 0, let n = ─s with s > 0 (note that Eq. (25) requires −2 ≤ 𝑛 < 0).  Then V(r) = (k/n)rn = ─(k/s)r─s = 
─(k/s)us, and Eq.(10) takes the form 

 

 𝐸 =
ଵ

ଶ
𝑚∗ ቀ

ௗ௨

ௗఝ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑢ଶ −  



௦
𝑢௦     (26) 

or 

 𝐸𝑢ି௦ =
ଵ

ଶ
𝑚∗𝑢ି௦ ቀ

ௗ௨

ௗఝ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑢ଶି௦ −  



௦
 .  (27)  

 
With the change of variable x = u2─s, Eq. (27) says 

 

 𝐸𝑢ି௦ +  


௦
=

ଵ

ଶ
𝑚∗ ቀ

ଶ

ଶି௦
ቁ

ଶ

ቀ
ௗ௫

ௗఝ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑥ଶ.  (28)  

 
For an orbit to be bound with an inverse power-law potential requires E < 0.  Since the power-law exponent does not 
depend on the energy, let E → 0─, when the particle become barely bound.  Then Eq. (28) reduces to 

 

  


௦
=

ଵ

ଶ
𝑚∗ ቀ

ଶ

ଶି௦
ቁ

ଶ

ቀ
ௗ௫

ௗఝ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑥ଶ,  (29) 

 
which is mathematically identical to the expression for the energy of a simple harmonic oscillator of total energy k/s, 
mass 4m*/(2 ─ s)2 and spring constant m*.  It therefore has the angular frequency 
  

 𝜔 =  ඨ
∗

∗ቀ
మ

మషೞ
ቁ

మ

 
=  

ଶି௦

ଶ
  .  (30) 

 
In a simple harmonic oscillator’s motion, the coordinate may be positive or negative, oscillating with period To = 
2π/ωo about the origin. But since x = u2─s = 1/r2─s  and r > 0, in the graph of the “potential energy” ½m*x2, the “motion” 
can take place only on the x > 0 side of the parabola.  Therefore the period is T = ½To, so that ω = 2ωo.  The condition 
for a closed orbit, Eq. (1), now says 



 
 𝜑 =  

గ

ଶఠ
=  

గ

ଶି௦
=  

గ

ଶା
 . (31) 

 
But we also require, from Eq. (25),  

 
 𝜑 =  

గ

√ଶା
 .  (32) 

 
Agreement between both expressions for φA requires 2 + 𝑛 =  √2 + 𝑛 and thus n = ─1.  The only closed orbit that 
results when n < 0 is n = ─1. 

The n > 0 Case 

Turning to n > 0, Eq. (10) becomes 
 

 𝐸 =
ଵ

ଶ
𝑚∗ ቀ

ௗ௨

ௗఝ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑢ଶ +




 

ଵ

௨.  (33) 

 
Following the same procedure as in the n < 0 case, we multiply Eq. (33) by un then let x2 ≡ u2+n.  In this way Eq. (33) 
is recast as 

 

 
ா

 −  



=

ଵ

ଶ
𝑚∗ ቀ

ଶ

ଶା
ቁ

ଶ

ቀ
ௗ௫

ௗఏ
ቁ

ଶ

+
ଵ

ଶ
𝑚∗𝑥ଶ.  (34) 

 
Before going further, we note a difficulty.  If (E/rn) – (k/n) could somehow approach a constant, then Eq. (34) would 
describe a simple harmonic oscillator of angular frequency 

 

 𝜔 =  ඨ
∗

∗ቀ
మ

మశ
ቁ

మ =  
ଶା

ଶ
 (35) 

 
which is identical to the n < 0 argument that led to n = –1, and therefore contradicts the hypothesis that n > 0.  Another 
approach must be found. 

Chin found a clever solution around this problem (see Appendix).  However, at this point our approach differs 
from Chin’s.  Both approaches are correct; we offer one that we find even simpler. 

Here is how we see it:  With the power-law potential V ~ rn for n > 0, for small r (large x) the effective potential is 
dominated by the 1/r2 centrifugal potential, which goes to infinity as r → 0 (u → ∞).  For large r (small u) the potential 
energy V ~ rn dominates, and goes to infinity as r → ∞, i.e., x → 0 (see Fig. 3).  The particle is always bound, and r 
can be made as small or as large as we like if E is sufficiently large.  Consider two extreme cases with large E: (a) 
small r, and (b) large r. 

                     



FIGURE 3.  The effective potential (red curve) with large E (the horizontal line). 
 

(a) For large E and small r (large u)  Eq. (10) becomes 
 

 𝐸 ≈
ଵ

ଶ
𝑚∗ ቀ

ௗ௨

ௗఏ
ቁ

ଶ

+  
ଵ

ଶ
𝑚∗𝑢ଶ   (36) 

 
which describes a simple harmonic oscillator of angular frequency 𝜔 =  ඥ𝑚∗/𝑚∗ = 1.  Since u > 0, only the positive 
side of the simple harmonic potential is accessible; thus the frequency is   ω = 2ωo, and by Eqs. (1) and (32) we have 

 
 𝜑 =  

గ

ଶ
=  

గ

√ଶା
   (37) 

 
which gives n = 2.  So far so good, but we must verify that n = 2 is consistent with the other extreme. 

  
(b) For large E and large r (small u), the centrifugal potential is negligible, and with n = 2, 
 

 𝐸 ≈
ଵ

ଶ
𝑚∗ ቀ

ௗ௨

ௗఏ
ቁ

ଶ

+  


ଶ
𝑟ଶ. (38) 

 
Since u = 1/r, by the chain rule and with Eqs. (3) and (10) it follows that 

 

 
ௗ௨

ௗఏ
=  −

̇


 (39) 

 

which restores Eq. (38) back into the original expression for a simple harmonic oscillator subjected to the force – 𝑘𝒓: 
 

 𝐸 =
ଵ

ଶ
𝑚�̇�ଶ +  

మ

ଶమ +
ଵ

ଶ
𝑘𝑟ଶ. (40) 

 
Evidently, the only closed orbit that results when n > 0 is n = +2. 

In summary, for a particle moving in a central potential V(r) = krn, the orbit will be closed for only two values of 
n: –1 and +2.  This is Bertrand’s theorem. 

APPENDIX 

Another Approach When  n > 0. 

In his excellent paper, S. A. Chin2 took another approach to finding solutions for n > 0.  Return to Eq. (33) and 
consider the turning points, where the kinetic energy vanishes.  Let u1 and u2 be the turning points corresponding to 
the smallest radius r1 (u1 = 1/r1) and the largest radius r2 (u2 = 1/r2).  With uk denoting either u1 or u2, at the turning 
points the total energy is entirely carried by the effective potential, so that 
 
 𝐸 =  𝑉(𝑢

ିଵ) =  
ଵ

ଶ
𝑚∗𝑢

ଶ +  



𝑢

ି  (41) 

 
where n > 0.  The orbit is bound, so as E → ∞, r can become very small (u very large).  For large E and large u the 
centrifugal potential dominates, and so 
 
 𝐸 ≈

ଵ

ଶ
𝑚∗𝑢ଵ

ଶ ≡  𝐸ଵ.  (42) 

 
Let us now form the ratio 
 
 Λ(𝑢) ≡  

൫௨షభ൯

ாభ
  (43) 

 



which by Eqs. (41)-(42) becomes  
 
 Λ(𝑢)  =  

௨మ

௨భ
మ +  

௨ష

ாభ
 . (44) 

 
Let x ≡ u/u1.  Now Eq. (44) can be rearranged into the form 
 

 Λ(𝑥) = 𝑥ଶ +  



ቀ

∗

ଶ
ቁ

/ଶ ௫ష

ாభ
భశ/మ.  (45) 

 
As E1 → ∞, Λ(x) ≈ x2, or Ve ≈ E1x2.  Return this to Eq. (33), which becomes 
 

 𝐸 ≈
ଵ

ଶ
𝑚∗ ቀ

ௗ௨

ௗఏ
ቁ

ଶ 

+  𝐸ଵ𝑥ଶ.  (46) 

 
Noting that u = u1x, it follows that 
 

 
ௗ௨

ௗఏ
=  ට

ଶாభ

∗  
ௗ௫

ௗఏ
  (47) 

 
and thus 
 

 𝐸 ≈  𝐸ଵ ቀ
ௗ௫

ௗఏ
ቁ

ଶ

+  𝑥ଶ൨.  (48) 

 
This can be rearranged to resemble the energy of a simple harmonic oscillator: 
 

 
ா

ଶாభ
=

ଵ

ଶ
ቀ

ௗ௫

ௗఏ
ቁ

ଶ

+
ଵ

ଶ
𝑥ଶ      (49) 

 
which has angular frequency ωo = 1, and again since only the positive half of the harmonic oscillator potential can be 
used, one obtains ω = 2, and thus from Eqs. (13) and (32), n = 2. 
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