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Abstract. The method of density functional theory (DFT) was used to create a simulation of a droplet inside a 

supersaturated vapor. This DFT model was based on a two-dimensional lattice structure with short-range interactions. 

Closest and second-closest neighbor interactions were included. An iterative numerical procedure was used to solve the 

DFT equation for the density profile of a critical liquid droplet. Droplets of different radii for a wide range of chemical 

potentials above coexistence were simulated. Surface tension was found to approach a maximum for a planar liquid-vapor 

interface as droplet radius increased at a constant temperature. Dependencies of surface tension on the radius shifted as 

temperature changed. 

INTRODUCTION 

Density functional theory (DFT) has been widely used in computational physics for solving problems related to 

interfacial phenomena. An important aspect of a liquid-vapor interface that could be studied with the help of DFT is 

the surface tension. Surface tension of a critical liquid droplet is one of the key factors that affect the rate of 

homogeneous nucleation during the first-order phase transition in supersaturated vapor. Original DFT studies of 

homogeneous nucleation were conducted in the late 1980s and early 1990s.1,2 Similar DFT models were used in the 

late 1990s3,4 to study the dependence of surface tension on the radius of liquid droplets. All these studies involve quite 

sophisticated DFT approaches that are based on integral equations to account for long-range interactions in fluid and 

hard sphere approximations to account for short-range interactions. It would have been overly challenging as an 

undergraduate student to master numerical approaches to solve these DFT equations. However, several years ago a 

paper devoted to a much simpler two-dimensional (2D) lattice gas version of DFT was published in the American 

Journal of Physics.5 This work has been studied as part of an upper-division thermodynamics course. The results 

presented here were obtained in the research project completed during this course. It was surprising to see that results 

conceptually match the results from much more sophisticated DFT studies, even though a rather simple model was 

used which did not require very extensive computational work.  To obtain a better understanding of these results, it is 

encouraged to study this work in conjunction with Ref. 5.  

DFT FOR 2D LATTICE GAS 

Following Ref. 5, a 2D lattice fluid that consists of circular particles with unit diameter was considered for this 

project. These particles can fill enumerated (sub index i) sites of a rectangular lattice. The number of particles is much 

smaller than the number of sites, so some sites are going to have one particle (occupation number ni = 1), and some 

will have none (occupation number ni = 0). Particles can interact by means of the short-range attractions. Only closest 

neighbor interactions on the four sides of a given particle and second-closest neighbor interactions diagonal to a given 

particle are accounted for. Corresponding strengths for these interactions are of ε and ε/4. The density of the fluid is 

constant (ρ) for the bulk homogeneous fluid (liquid or gas) or varying in space (ρi) for inhomogeneous fluid, such as 

liquid droplets inside of gas. This density, ρi = < ni >, is the average value of occupation numbers for a given site over 

all possible configurations of the system. DFT allows the thermodynamic properties of the fluid to be obtained as a 

function of this average density. This work considers the fluid to be in grand canonical ensemble, so the following 

equation was used for grand thermodynamic potential:5 
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In this equation, kB is the Boltzmann constant, T is thermodynamic temperature, and μ is chemical potential. 

Summation with respect to j is performed through the closest neighbors, and summation with respect to k is performed 

through the next-closest neighbors. The extreme value of this grand thermodynamic potential delivers the density 

profile of the system at equilibrium, which satisfies this density profile equation:5 
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This equation must be solved in order to determine the density profile of critical liquid droplets in equilibrium with 

their supersaturated vapor surroundings. Once determined, this density profile can be used to find other 

thermodynamic properties of a two-phase system.  

THERMODYNAMICS OF A TWO-PHASE SYSTEM 

From the standpoint of classical thermodynamics, the grand thermodynamics potential of a two-phase system can 

be split into two contributions: the bulk phases and interfacial contribution. In a 2D case, one can assume that a circular 

liquid droplet is formed in the middle of an open square (L×L lattice cells) system, which reduces grand 

thermodynamic potential: 

 𝛺 = −𝑃𝑙𝜋𝑅2 − 𝑃𝑣(𝐿2 − 𝜋𝑅2) + 𝜎2𝜋𝑅 (3)  

Here Pl is the bulk liquid pressure, Pv is the bulk vapor pressure, and σ is the 2D analog of the surface tension. The 

radius R of the droplet can be calculated assuming an equimolar divining surface:  

 𝑁 = 𝜌𝑙𝜋𝑅2 + 𝜌𝑣(𝐿2 − 𝜋𝑅2)  (4) 

Here ρl is the density of bulk liquid and ρv is the density of bulk vapor. N is the total number of particles in the system, 

and by solving that equation, the radius R can be found: 

 𝑅 = √
𝑁−𝜌𝑣𝐿2
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This radius can then be used in Eq. (3), which gives the 2D analog of the surface tension: 

 𝜎 =
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NUMERICAL PROCEDURE FOR SOLVING DFT EQUATION 

The density of the bulk liquid and bulk vapor, as well as the pressure, were found by solving the bulk fluid equations 

introduced in Ref. 5. This was done for a large range of chemical potentials above the coexistence value but below 

the spinodal value. One can use bulk fluid phase diagrams and equations from Ref. 5 for numeric values of these 

thermodynamic properties. An iteration procedure described in Ref. 5, with a mixing parameter in the Picard iteration 

algorithm of 0.02, was used to solve Eq. (2). Following the approach originally introduced in Ref. 1, an initial 

approximation for the density profile was set to supersaturated vapor everywhere except inside of a region with a 

given initial radius, where it was set to the bulk liquid. Since the desired solution would represent an unstable critical 

droplet inside of a supersaturated vapor, the number of particles in the system was monitored throughout iterations to 

see if the droplet was growing or decreasing. After the original droplet radius was set to 1, iterations were performed 

until the iteration procedure started diverging. If the number of particles in the system was decreasing at this point, 

the original radius was increased by 1 and the entire procedure was repeated. The simulation was stopped when the 

number of particles started to increase. The number of particles in the system at that point was then used to calculate 

the radius of the critical droplet and the 2D analog of surface tension according to Eqs. (5) and (6). 

RESULTS AND CONCLUSIONS 

Density profiles of critical droplets inside a 150-lattice cell square matrix were calculated for different chemical 

potentials (supersaturations) and corresponding droplet radii. Figure 1(a) shows a typical density profile for a droplet 

with a radius of six lattice cells. Figure 1(b) shows how the density profile changes for decreasing radii. The most 

interesting result was that for the smallest droplets, the bulk liquid phase is not realized at the center. This points to 

self-overlapping of the surface layer and is consistent with the results found in more sophisticated DFT models.1–3 

Figure 2(a) shows how surface tension increases to a maximum as the radii increase and how an increasing shift occurs 

to that maximum as temperature is decreased. This is consistent with the previous findings for small droplets,3 where 



the surface tension would be substantially smaller than that in the planar limit. However, the present model is incapable 

of predicting nonmonotonic behavior for surface tension as a function of the droplet radius, because no negative 

Tolman length3,4 is found for very large droplets. This is not surprising, since liquid and vapor have artificially 

symmetric bulk properties in this model. This would be considered the weakest feature of this model. Figure 2(b) 

shows how chemical potential depends on the critical droplet radii and how an increasing shift and change in curvature 

occur as temperature increases. These dependencies could serve as inputs to study the kinetics of homogeneous 

nucleation. 

 
(a) (b) 

FIGURE 1. (a) A typical density profile [(μ-μcoex)/kBT = 0.11, μcoex/kBT = -3.01, kBT = 0.83ε]. (b) Cross sections of density 

profiles for droplets of different radii at kBT = 0.83ε. Position and radii are measured in number of lattice cells. Horizontal lines 

represent bulk densities. 
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(b) 

FIGURE 2. (a) 2D analog of surface tension (in kBT/lattice cell size) for different temperatures and droplet radii. (b) Dependence 

of chemical potential (in kBT) on droplet radii, where μcoex/kBT= -2.50ε/kBT, and horizontal lines represent these μcoex values for 

corresponding temperatures. Radii are measured in the number of lattice cells. 
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