Engineering and characterization of large area, aligned single-wall carbon nanotubes Luis Alejandro Royo Romero

NIST Advisor: Dr. Angela Hight Walker

August 4th, 2017

National Institute of Standards and Technology U.S. Department of Commerce

Main Goal

- Establish a NIST capability to produce large area, highly aligned Single-Wall Carbon Nanotubes (SWCNT) films for nanoelectronics devices
- Optimize SWCNTs film alignment protocol¹ utilizing NIST's SWCNTs

http://www.tasc-nt.or.jp/en/project/characteristic.html

3

He, X. ,et al, *Nature Nanotechnology* 633 (2016)

Motivation

 SWCNTs possess unique optical and electronic properties that are enhanced at the macroscopic scale in well-aligned films

He, X. ,et al, Nature Nanotechnology Figure **1,3**

Experimental Set Up: Producing Aligned Films

From Jeff Fagan

Vacuum Filtration Apparatus

Film Alignment Optimization

Transfer Process & Domain Size

Qualitative Alignment Assessment Polarized Optical Microscopy

Dianna Cowern (@thephysicsgirl)

Qualitative Results: Polarized Optical Microscopy

Raman Sensitivity to Alignment

Quantitative Results: Nematic Order Parameter

Membrane	I_{VV}/I_{HH}	SWCNT Concentration (µg/mL)	DOC Concentration (%)
106	9.21	7.19	0.13

$$S_{Raman} = \frac{6\Delta I_{VV} + 3(1+\Delta)I_{VH} - 8I_{HH}}{6\Delta I_{VV} + 12(1+\Delta)I_{VH} - 16I_{HH}}$$

 S_{Raman} of Membrane 106 is 0.86

Conclusion

- Established a new NIST capability
- Successfully produced several large area, highly aligned SWCNTs films
- Mastered characterization methods: optical cross polarization and polarized Raman spectroscopy

Acknowledgements

Questions?

Next Steps

- Investigate how does filled SWCNT, other than water, affect the alignment
- How the polycarbonate membrane affects the alignment
- Optimizing the protocol to create monodomain alignment films

Polarized Raman Spectroscopy

Raman Spectra of SWCNTs

Assignment of Chirality of Tubes

- 514 nm = 2.412 eV
 - (11,9)
- 633 nm = 1.959 eV
 - (14,5)
- 785 nm = 1.579 eV
 - (19,3)

Membrane 105 CNT Conc: 5.53 μg/mL DOC Conc: 1.01% Alignment: ~ 500μm Substrate: Glass

Polarized Raman Spectroscopy

Assess the quality of alignment i.e. determine the nematic order parameter S

$$S_{Raman} = \frac{6\Delta I_{VV} + 3(1+\Delta)I_{VH} - 8I_{HH}}{6\Delta I_{VV} + 12(1+\Delta)I_{VH} - 16I_{HH}}$$

24

He, X., et al, Nature Nanotechnology 633-638 (2016)

