
  ELEGANT CONNECTIONS IN PHYSICS .    
 

…..   1     Summer 2015  ….. 

N

How Airplanes Fly: 
Lift and Circulation 
 
 

by Dwight E. Neuenschwander 
Professor of Physics  
Southern Nazarene University  
Bethany, OK 

 
 
 

 
 
 
 
 
 

             
                    o matter how much physics you know, 
              it’s still amazing to see a 380,000 lb.  
              airplane fly.  Whenever I fly 
commercially, I request a window seat.  The 
view of the landscape from on high is more 
interesting than any movie.  The airplane’s 
wings are fascinating to watch too—not only for 
what you see with your eyes, but also for what 
you see in your mind, thanks to physics. 
     When an airplane flies, the pressure Pl on 
the lower wing surface exceeds the pressure Pu 
on the upper surface.  Equivalently, the air 
rushing by the lower surface moves slower than 
air passing over the upper surface.  These 
statements are equivalent thanks to Bernoulli’s 
equation—the work-energy theorem applied to 
fluids.  For any two points 1 and 2 (Fig. 1) in 
non-turbulent, inviscid, incompressible, 
irrotational flow, Bernoulli says 

 
(½ ρv2 + ρgy + P )1 = (½ ρv2 + ρgy + P )2     (1) 

where ρ denotes the fluid’s density and g the 
gravitational field.  Since the top and bottom 
surfaces of a wing have essentially the same 
vertical coordinate y, it follows that Pl  > Pu if and 
only if vl < vu.  But why should the air move 
faster over the top surface?  Answering this 
question introduces the closed-path line 
integral of velocity, the “circulation” Γ, 
 

Γ	 ≡ ∮ ࢜ ∙ ஼࢘݀      (2) 

 
where the closed path C is traversed counter-
clockwise. [1]  Consider an airfoil—a wing’s 
cross-section—in Fig. 1.  The “chord length” L 
denotes the distance between the airfoil’s 
leading and trailing edges.  Assuming 
horizontal flow, the circulation evaluated over 
path ABCD gives Γ = (vl  −  vu)L < 0.  Now three 
statements— Pl > Pu, vl < vu, and Γ < 0—are 
equivalent articulations of the condition 
necessary for lift.  
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Fig. 1.  The airfoil and geometry for Eq. (1). 

  
     Under conditions where Bernoulli’s equation 
holds, Γ = const. [2]  This is “Kelvin’s circulation 
theorem.”  From Eq. (2) for a fixed closed path 
we have 
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Consider a parcel of air of volume dV = Ady.  Its 
weight dm g = ρgAdy and the pressure force  
[P(y) – P(y+dy)]A turn dF = dma into 
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Eq. (4) shows the integral of Eq. (3) to be path-
independent, proving the theorem.  But this 
raises a puzzle.  An airplane sitting in still air 
before takeoff has Γ = 0 for any closed path 
about an airfoil, but in flight Γ < 0.  However, 
nonzero viscosity provides the loophole that lets 
planes fly while respecting Kelvin’s theorem. 
     Inviscid fluids are idealizations—zero 
viscosity fluids would be infinitely runny.  
Water has a small viscosity, molasses a large 
viscosity.  With viscosity, adjacent layers of 
fluid exert frictional forces on one another, 
tangent to the flow.  On the wing surface the 
velocity is zero (driving your car does not sweep 
dust off it), and within a few millimeters above 
the surface the velocity reaches its free-stream 
value (Fig. 2).  This region of velocity gradient is 
the “boundary layer.” [3]  Aircraft fuselages and 
wings taper to pointed trailing edges to prevent 

boundary layer separation from the surface, 
which would produce energy-consuming 
turbulence. 

 
Fig. 2.  Boundary layer due to viscosity. 

 
     Returning to the puzzle, a simple 
demonstration illustrates the crucial point. [4]  
Insert a ruler, held vertically, into a pan of still 
water.  Suddenly push the ruler horizontally, 
such that its chord makes a non-zero “angle of 
attack” with the direction of motion.  Watch the 
water at the trailing edge.  Thanks to viscosity, 
a counter-clockwise vortex forms there (Fig. 3). 
[5]  
 

 
 
 
 
 
 

Fig. 3.  The starting vortex. 
 

     Return to the airplane before takeoff, and 
consider the closed path ABHCDKA around the 
airfoil (Fig. 4).  This path lies outside the 
boundary layer, where the effects of viscosity 
are negligible, so Kelvin’s theorem applies.  
Before takeoff, ΓABHCDKA = 0.  When the plane 
accelerates forward, the counter-clockwise 
vortex forms at the wing’s trailing edge, within 
closed path HCDKH, so that ΓHCDKH  > 0.  
Consider path ABHKA that surrounds the 
airfoil but excludes the starting vortex (Figs. 4 
and 5).  Since ΓABHCDKA = ΓABHKA + ΓHCDKH (section 
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HK in ΓABHKA cancels KH in ΓHCDKH), Kelvin’s 
theorem requires ΓABHKA  < 0.  With the flows 
along ABHKA parallel to the chord, this 
requires vl  < vu.  By Bernoulli’s equation this 
requires Pl > Pu, and the plane flies. 
 
 

 
 
 
 
 
 
 

Fig. 4.  The paths used in evaluating the circulation 
around an airfoil. 

 

 
Fig. 5.  The circulation path ABHKA. 

 

     From another perspective, a wing gets lift 
because it deflects the air’s momentum 
downward (Fig. 6).  Consider a parcel of air 
bouncing off a wing with nonzero angle of 
attack. [6] 
 

 
Fig. 6.  Wing with flaps down deflecting the air’s 

momentum. 

Before encountering the wing, the parcel 
approaches it with horizontal velocity v∞.  
Compute Δpy/Δt, which equals the net vertical 
force the wing exerts on the air parcel, which is 
opposite the upward force the air exerts on the 
wing.  We have Δpy/Δt = (Δm/Δt) vy  where Δm = 
ρwhΔx for a parcel having height h, width w, and 
horizontal length Δx = v∞ Δt.  Thus Δpy/Δt  = 
ρhwv∞vy, and the upward force exerted on the 
wing by the air is −ρhwv∞vy which is > 0 because 
vy < 0. A vertical section of the closed path that 
includes vy contributes hvy < 0 to Γ.  Thus the 
lifting force/length is Fy/w = −ρv∞Γ  >  0. 
     In 1902 Martin Kutta in Germany published 
“Lifting forces in flowing fluids,” which related 
lift to circulation for 2-D flow past a circular 
arc with a trailing edge.  In 1906 Nikolai 
Joukowski in Russia generalized the lift 
theorem, now called the “Kutta-Joukowski lift 
theorem,” [7] relating circulation to the lift, 
perpendicular to v∞, for any two-dimensional 
airfoil: Lift/w = −ρv∞ Γ.  The value of Γ depends on 
the airfoil shape.  A supplementary ad hoc 
Kutta-Joukowski hypothesis proposed a 
steady-flow value for Γ and thus a lift that 
agrees beautifully with phenomenology. [8]  
Specifically, for a thin symmetrical airfoil with a 
curved leading edge, sharp trailing edge, chord 
length L and angle of attack θ, the K-J 
hypothesis puts Γ = −πv∞ Lsinθ, so that Lift/w = 
+πρ(v∞)2Lsinθ.  This result is to classical airfoil 
design what simple pendulums and Kepler’s 
elliptical orbits are to other areas of mechanics: 
a model that serves as an excellent 
approximation to reality, and a starting-point 
for extensions to more complex situations. The 
K-J hypothesis works for θ less than 8 to 20 
degrees depending on airfoil shape; at higher 
angles boundary layer separation on the upper 
surface causes a stall. [9] 
     On December 17, 1903, the Wright brothers 
achieved the first successful powered flight.  
They did not use the lift theorem, but took an 
empirical hands-on approach.  Their airfoil 
designs were guided by data they collected from 
their wind tunnel.  In 1909 Wilbur Wright 
wrote, “…I think it will save me much time if I 
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follow my usual plan and let the truth make 
itself apparent in actual practice.” [10]  The 
Kutta-Jukowski hypothesis for Γ, along with 
their namesake lift theorem, affirms 
theoretically what the Wrights found 
experimentally. 
     The next time you fly commercially, ask for 
a window seat, and really look at the wing.  
Imagine the circulation around the airfoil 
generating the pressure differential that keeps 
the airliner aloft.   In humid weather this 
circulation is sometimes made visible to the 
eyes (Fig. 7) as well as to the mind—because 
the wing has finite length, this circulation can 
show up as vortex of water vapor spinning off 
the wing-tips. [11]  Bon voyage! 
 

 
Fig. 7.  Humidity making the flow visible.  The 

condensation above the wing shows the pressure to be 
lower there. 
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