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Retarded Time, Jefimenko’s Equations, and the Liénard-Wiechert Potentials

From the perspective of classical electrodynamics, light is a wave in the electromagnetic field. However, our
studies of electromagnetism usually begin with electrostatics and magnetostatics. For instance, according to
Coulomb’s law the electrostatic field E due to a point charge g is E ~ gR/R®, where R denotes the displacement vector
from the charge to the observer. Moving beyond electrostatics, if the charge ¢ somehow became time-dependent, so
that ¢ = q(t), then as g changes, E changes. The change in g produces a ripple in E that propagates at the speed of light.
Thus the field detected by the observer at time # would depend on the value of g at the time R/c earlier. Therefore,
shouldn’t the time-dependent E simply be E(7) ~ g(t — R/c)R/R®, where R means the vector from the charge’s location
when it emitted the change in the field whose ripple arrived at the observer’s location at the later time #? If that were
so, then a time-dependent electric field could be envisioned as a time-ordered sequence of electrostatic Coulomb fields.
And shouldn’t the same adjustment for time-dependent currents be made to take us from the Biot-Savart law of
magnetostatics to time-dependent magnetic fields? If these scenarios were all that was necessary in going from static
fields to electrodynamics, electromagnetism might be a lot simpler but it would not be nearly so interesting. It would
also be wrong. It turns out that this simple strategy works for the electric and magnetic potentials, but not for E and B
themselves.

Maxwell’s equations are four coupled first-order partial differential equations for the electric field E and the
magnetic field B. They relate the electromagnetic field’s sources—charge density p and current density J—to the
fields, and the fields to each other. The fields E and B are derivatives of the potentials ¢ and A:

E= -Vo-4 3
and B= VxA. 4)

In electrostatics the potential is given by

o(r) = K2} & )

=

where r — r' = R denotes the vector from the source point r' to the field point r, d *#’ a volume element for integrating
over source coordinates, k = 1/4me, denotes the Coulomb constant, the integral extends over all space, and the charge
density vanishes at infinity rapidly enough for the integral to exist. In magnetostatics the vector potential is

A = k22 B (6)

=]

where k,, = n /4n denotes the Biot-Savart constant. When the sources and thus the fields are allowed to be
time-dependent, the charge and current densities become functions of time, p = p(r',f) and J = J(r',f). However, it
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takes the time |r — r'|/c for the change in the field to propagate from a source point to the field point. One way to solve
a problem is to guess the solution, so let us guess that the time-dependent potentials take on the simplest possible
upgrade (the same strategy proposed above for transitioning from static E and B to their time-dependent extensions, but
here applied to the potentials): keep the spatial structure of Egs. (5) and (6) intact, but require that the potentials at the
field point, at time ¢, depend on what the sources at r' were doing at the time R/c earlier. This intuitive argument
motivates one to write

Q1) = K[2D (7)

=]
and

Ay 1) = hon 2L By (8)

=]

which introduces the so-called “retarded time” #,,
t=t—R/. 9

When the intuitive solution thus assumed for the potentials, if it is correct it can be made rigorous after the fact by
showing that it satisfies the original inhomogeneous wave equation (in the Lorenz gauge). The guess turns out to be
correct, so as you would expect it can also be derived deductively (no guessing!) with rigor.[6] The fields E and B
follow from applying Egs. (1) and (2) to Eqgs. (7) and (8), a somewhat laborious task because the gradient and curl pick
up Vi, terms. These terms would have been missed had we made the substitution t — t, in the static E and B fields
directly. After taking the derivatives, at the end of the day one obtains E and B as integrals over the source densities,
Jefimenko’s equations:[7]

E(r,f)=k 28+ Rdo — L gy (10)
and
B(r,t) = kn [[ 22 + L @)xR] . (11)

Jefimenko’s equations are gauge-invariant, and reveals the interesting subtly of electrodynamics that forms the focus of
our attention. The correct time-dependent potentials could be guessed by replacing static charge and current densities
with time-dependent ones, with allowance made for the retarded time. However, had that strategy been applied to
Coulomb’s law for E and the Biot-Savart law for B, the 1/R electromagnetic field that accounts for radiation would
have been missed entirely, because the fun with the V¢, terms would have been bypassed. There is a lot of physics in
the spatial variation of the retarded time.

In the term R/c = |r —r'|/c of Eq. (9), and in its applications in Egs. (7)-(8) and (10)-(11), r' is where a source
particle was when the signal was emitted at time t,, and r is where the observer detected the signal at the later time #.
Conceptually, this seems straightforward enough. However, when sitting down to solve a problem one can feel as
ifhaving been placed between parallel mirrors. For instance, consider a source moving with constant velocity v, such
that r' = v£. When I replace ¢ with #,, do I write ¢, = f — |[r — v#|/c and let it go at that, or do I write ¢ — |r — v(¢ — R/c)|/c
and continue iterating? The point to remember in retarded time problems is that, no matter how crazy the motion of a
point source ¢, at any one instant ¢ the observer can receive a signal from only one past event in ¢’s history. This is so
because a charged particle cannot move at the speed of light relative to any observer. Thus if ¢ sends forth a signal
from event A, the signal will always outrace ¢ itself, so I will detect, at any time, at most one signal that was emitted by
q.[8] Thus when I want to evaluate integrals such as Eq. (7) or (8), the question becomes: what time was it (according
tothe synchronized clocks in my reference frame that measure events /ocally and then report their data to me later when
I analyze the experiment) when the source charge sent forth that signal that I receive at the instant t? Let us call the
time of emission ¢’ (which is the same as ¢, but the new notation emphasizes that ' was the moment, according to my
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reference frame’s clocks, when the signal was emitted from r', whereas the symbol ¢, emphasizes the intervening
distance R). If I know the source particle’s trajectory r' as a function of time, then ¢/, the time the signal was emitted
that later landed in my camera ¢, can be found in terms of r and ¢ by solving for #' in Eq. (9), written as

ot —t)=r—r'(t"). (12)

One solves this equation to obtain an expression ¢'= f'(¢,r) that gives the instant ¢’ when the signal emitted by g arrives
at my detector at time # > ¢". In the integrals of Eqs. (7) and (8), we integrate over the r' spatial coordinates; Eq. (12)
tells us the time ¢/, and thus the location r'(¢'), when a charge emitted its signal that landed at r at time ¢.

The aforementioned confusion gets cleared up when separating the applications of Egs. (7) and (8) into two
kinds of situations, (A) charge and current distributions that vary their strength in time but don’t move around, and (B)
moving point charges. For scenario (A), the charges and currents stay in place but their amounts vary with time.
Examples include a capacitor being charged, where fields are shielded (or ignored) that arise from the current
delivering charge to the capacitor. As a subset of such problems, when the size of the source charge and current arrays
are small compared to the distance between them and the field point, so that |r'| <<|r| for all r', an expansion of 1/r —
r'| about r’ = 0 turns Eqgs. (7) and (8) into multipole expansions. Applications include the radiation patterns produced
by the electric and magnetic dipole antennas.[9] Case (B) considers the radiation produced by a single point charge
moving along some trajectory r’, known as a function of time. Once we know how to find the E and B fields for an
arbitrarily moving single point charge, the fields detected at r at time ¢, produced by arrays of moving charges, follow
by superposition.

In situation (A) bodies carrying charge g and wires carrying currents / stay at rest, but the charges on those
bodies and the currents in those wires vary with time, g = ¢(¢) and I = I(f). Consider the problem of determining the
fields on the axis (the z axis) of a uniformly charged disc of radius a. In the electrostatics case, an introductory physics
example has the student show from Eq. (5) that

0() =MN\2+a?-z]. (13)

Consider a time-dependent version of this problem, where the surface charge density is zero for # < 0, then somehow
instantaneously becomes g/na?, uniformly distributed, for > 0. Since there are no currents, A is zero and we have to
calculate only ¢(z,7). For # <0 there is no potential because there is no charge on the disc. After = 0 there is charge on
the disc, and that charge produces a nonzero field, but this change in the field propagates away from the disc at speed c.
Thus the observer on the z axis detects zero potential until # = z/c. At that time the “first light” arrives at z from the
center of the disc. For times ¢ > L/c where L* = z* + a? (Fig. 4), the potential reduces to its electrostatic value of Eq.
(13). For times z/c <t < L/c, the part of the charged disc from which the news arrives at z of the sudden nonzero charge
distribution, are points on a circle of radius 0 < p < a. Points on this circle lie the distance » from the observation point,
so that ¢ = v/c = (p* + 2%)" or p = (¢* — 2%)". During this time interval, the a in Eq. (13) gets replaced with p, which
gives ¢(z,1) = kq/(ct + z) for z/c < t < L/c. Att= L/c Eq. (13) can be recovered by writing ¢(z,L/c) = kq (L — z)/(L* —
z%)”. E follows from Eq. (3).

In situation (B) the radiating point charge moves along a trajectory r’, a known function of time (Fig. 4).
Since the source is a point charge, one may be tempted to write Eq. (7) as

O(r, 1) = iy (14)
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Fig. 4. The signals emitted by the charge at times ¢’ are detected by the observer at time ¢.

But we must be careful here. Eq. (7) is formally an integral over a charge density. While we can accommodate the
density of a point charge by using a Dirac delta function, a point charge is an idealization. The electrons (along with
other leptons and the quarks) are the closest things we have to point charges in the real world, but they have nonzero
magnetic dipole moments (neutrinos excepted), and how can there be such a thing as a point dipole? All we know
about the electron is that if it has a finite size, that cannot exceed something like 107¥ m[10]—smaller than one meter
by the same ratio as one second is to the age of the universe—but not known to be exactly zero! In addition,
calculations with Feynman show we must take seriously the notion that an electron is always surrounded by a cloud of
virtual electron-positron pairs. Even the humble electron carries a charge distribution! Whatever the charge
distribution, let us smear the conceptual point charge out to a finite volume, then see what happens as we let the volume
go to zero.

Once we entertain the notion of a very small but finite volume enclosing the charge, |r — r'| is essentially
constant within the volume, so instead of Eq. (14) we confront

o(r )= £ [p(r, ). (15)

The integral describes a charge within a volume, but the charge is moving, and along with it so is the volume. That
means Eq. (2) kicks in, and the volume containing the charge ¢ is the volume 7’ of Eq. (2). Instead of Eq. (14) we
obtain

o(r, )= 4 (16)

where R =|r — r'(¢)] and s = R — (R-v)/c. When the same reasoning is applied the vector potential produced by a
moving point charge, we find

A(r,t)= % o(r1). (17)
These are the Liénard-Wiechert potentials.[11] The factor 1/s that appears in @(r,f), instead of the 1/R that appears in

the electrostatic potential, comes from the effects of the speed of a changing electromagnetic field being finite; it has
nothing to do with the distribution of charge. Therefore the 1/s stays, even for a point charge.
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Now by Egs. (3) and (4) the E and B fields follow, again somewhat laboriously because of the V¢ terms. At
the end of another day one finds for E,

E(r,0) =% (1 — Z)w+ LLRx(wxa) (18)

253

where w = R — R(v/c) and a = dv/dt is the particle’s acceleration. For B we obtain

B(r,y="1 R xE. (19)

What about consistency between the Liénard-Wiechert potentials and the Jefimenko equations? If we apply
the Jefimenko equations to a moving point charge, for the volumes in Egs. (10) and (11) we must use Eq. (2). Richard
Feynman wrote the results for E and B in a similar way, for their presentation to an introductory physics class. If the
source is a point charge ¢ moving with velocity v, the fields can be expressed as we find them in the Feynman Lectures
on Physics:[12]

. . "
E(r,0)= kql g+ £ GG+ 255 1 re (20)

with B given by Eq. (19). The last terms in all these expressions for E and B, the 1/R fields, detach themselves and
propagate away from the sources. These fields, produced when charged particles accelerate, are the so-called radiation
fields. They carry light and information between separated events.

A change in the electromagnetic field travels the fastest of any signal we know. Technology based on
classical and quantum electrodynamics has indelibly changed human life. However, electrodynamics and the
technologies it makes possible do not tell us what is worth communicating. Henry David Thoreau observed as much in
1854,[13] when electromagnetic state-of-the-art communication meant telegraph wires and Morse code. He wrote,
“We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine and Texas, it may be, have
nothing important to communicate.”[13]. Today we can be constantly interrupted by text messages, phone calls and
postings on smart phones, about which Thoreau again gently admonishes us, “If the bell rights, why should we
run?’[14]

Be that is it may, the conceptual beauty of the electromagnetic fields coupled to matter, that make possible the
exchange of information at a distance—and with it hopefully the growth of knowledge and wisdom and not mere
distractions—may offer evidence that, unlike Thoreau’s shepherd whose flocks wander to pastures higher than his
thoughts,[15] our thoughts appreciate the strange and wonderful universe in which we are privileged to live. “Why
should I feel lonely? is not our planet in the Milky Way?”’[16 92]
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