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The fall of 2015 marks the centennial of Albert Einstein’s 
unveiling of the general theory of relativity.  A dramatic result 
that Einstein derived was the prediction that a light ray grazing 
the Sun would be deflected about 1.7 seconds of arc.  In 1919 a 
British expedition confirmed Einstein’s prediction during a solar 
eclipse.  The social significance of this event was as dramatic 
as its physics significance.  A deep truth about the universe, 
predicted by a resident of Germany, was confirmed by a British 
group one year after World War I ended.  On both sides this 
accomplishment lifted the public’s imagination—as shown 
by Einstein suddenly becoming an international celebrity—to 
something higher than nationalistic squabbles.  

In addition to the general relativity centennial, 2015 has also 
been designated by the United Nations as “The International 
Year of Light and Light-Based Technologies.”[1]  The organizers 
probably intended to emphasize recent technologies such as 
lasers and fiber optics and light-emitting diodes.  But even 
more ubiquitous are lenses, which are easy to take for granted.  
Lenses, along with mirrors, were the first technologies for 
manipulating light. Lenses used for starting fires by focusing 
sunlight—so-called “burning lenses”—were cutting-edge 
technology a millennium ago.  They were studied quantitatively 
in the tenth century by Muslim scholars, including Ibn al-
Haytham  (or Alhazen) and Abu Sàd al-Alá ibn Sahl; the latter’s 
book, On Burning Lenses and Mirrors written in 984, describes 
refraction by glass with curved surfaces.[2]  In the thirteenth 
century glassblowers in Venice and Pisa made magnifying 
glasses to aid monks in their reading.  The first known image of 
eyeglasses held in a frame and poised on the nose of the reader 
appears in a fresco portrait of Cardinal Hugh of Saint-Cher, 
painted by Tommaso de Modena in 1352.

The simplest description of image formation by a lens is 
found in the “thin lens equation,” a standard topic in introductory 
physics.  For an object located at distance so from a thin lens of 
focal length f, the image forms at the distance si from the lens 
according to[3]

	  .		  (1)

The focal length, a property of the lens, is determined by the 
refractive index n of the glass and the first and second radii of 
curvature encountered by the ray, respectively R1 and R2.  In 
terms of these parameters right-hand side of Eq. (1) is given by 
the “lens maker’s equation,” 

	 .	 (2)

A converging (diverging) lens has f  > 0 (f < 0).  Eqs. (1) and (2) can 
be derived through Fermat’s Principle, which postulates that of all 
the possible paths connecting fixed points a and b, the path followed 
by a light ray is the one that makes the time of its trip a minimum:

	 	 (3)

Since the speed of light in a refractive medium is v = ds/dt = c/n 
with c the speed of light in vacuum, Eq. (3) can be rewritten

	 	 (4)

For rays in the xy plane, ds = [1 + (dy/dx)2]½ dx.  The calculus of 
variations may be applied through the Euler-Lagrange equation 
to find the trajectory y = y(x) that describes the ray, assuming n 
to be a known function of x and y.

The physics connection of interest here notes that, as Einstein 
and the British expedition together first showed, a massive 
body’s gravity deflects light rays similar to the action of a 
converging lens.  Thus we speak of “gravitational lensing.”  It 
might be fun to see how gravitational lensing can be written as a 
thin lens equation.  To experts in gravitational lensing this is old 
stuff.  However, those of us who do not think about gravitational 
lensing every day, but are familiar with thin lens physics along 
with some special relativity and intermediate mechanics, can 
recreate the connection for ourselves. 

Let us start with some principles of special relativity, 
which applies in inertial reference frames and thus includes no 
gravitation.  A laboratory frame measures locally the distance ds 
and time dt between two nearby events; and a rocket frame[4] 
measures locally the distance ds′ and time dt′ between those 
same two events.  Even though in general ds ≠ ds′ (recall length 
contraction) and dt ≠ dt′ (viz., time dilation), nevertheless the 
spacetime interval is invariant, (cdt)2 – (ds)2 = (cdt′)2 – (ds′)2.  
The numerical value of this invariant is (cdτ)2 where dτ denotes 
the “proper time,” the time between the two events as measured 
in the reference frame where they occur at the same place.  If 
spatial coordinates are measured with a spherical coordinate 
system, with r the distance from the origin, θ the latitude 
measured from the north pole and φ the longitude, the spacetime 
interval finds expression as

	 .  (5)

In writing Eq. (5) I have absorbed c into the times, cdt → dt and 
likewise for proper time, so that time intervals are measured in 
meters.  In addition I have omitted the plethora of parentheses 
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around the squares of the coordinate differentials.  Furthermore, 
in the situations we will consider here, axial symmetry about the 
north-south (or z) axis will be assumed, so we may carry out our 
calculations in the θ = π/2 plane, reducing Eq. (5) to

	  .		  (6)

Now let us “turn on gravity” by placing a static, spherically 
symmetric mass M at the origin.  The gravitation of M will 
modify the spacetime interval of Eq. (6), because according to 
Einstein’s principle of equivalence for gravitational and inertial 
mass, the presence of gravitation is equivalent to being in a non-
inertial reference frame.  Since M’s gravity might stretch space 
in the radial direction, and since Einstein’s field equations lead 
in general to the prediction that gravity affects a clock’s period 
(viz.,, gravitational redshift), let us parameterize the effects of M 
by modifying Eq. (6) into

	  	 (7)

where the functions A and B are found by solving Einstein’s 
gravitational field equations.  This was done in 1915, with no 
approximation, by Karl Schwarzschild.[5]  Schwarzschild found 
that B = 1/A where (upon including c)

	 			   (8)

and G denotes Newton’s gravitation constant.  Notice that 
G/c2  ≈ 4.2×10−28 m/kg, and thus M* ≡ GM/c2 is a length 
corresponding to mass M.  For instance, if we insert the Sun’s 
mass of 2×1030  kg, we find that M*sun ≈ 0.8 km.  When people 
say “the mass of the Sun is 0.8 kilometers” they mean GM/
c2 = 0.8 km.  Henceforth we can write A = 1 – 2M*/r.  2M* is 
called the “Schwarzschild radius.”  The Schwarzschild radius 
of the Sun is 1.6 km; that of the Earth is about 0.44 cm.  One 
can think of the Schwarzschild radius as the radius of the region 
within which M must be compressed to make it into a black hole.  
Here we will not be thinking about black holes per se, but are 
interested in any mass that (at least to first approximation) may 
be considered a point mass or spherically symmetric distribution 
of matter.[6]  

Eq. (7) becomes (again absorbing the c’s into the times)

	  		  (9)

Before going on, we should clarify what Schwarzschild 
coordinates mean.[7]  Consider an imaginary spherical shell 
centered on and at rest relative to the origin, and enclosing the 
mass M.  This shell’s r-coordinate is by definition the shell’s 
circumference divided by 2π.  In the absence of gravitation this 
definition of r gives the same number as the distance from the 
origin to the shell.  But gravity “stretches” space radially, making 
“radial length” and “r-coordinate difference” distinct quantities.  
In Schwarzschild geometry the radial distance as measured with 
a tape measure between Shell 1 and Shell 2 is not |r2 – r1|.  The 
tape-measured distance drshell between nearby shells, and the 

difference dr in their r-coordinates, are related by drshell = A−½ dr.  
Therefore the distance Δrshell between shells 1 and 2 is

		   .	 (10)

This integrates to a messy logarithm, but reduces to r2 – r1 as M* 
→ 0.  In traveling radially between Shell 1 to Shell 2, a traveler 
will go farther than |r2 – r1|.  Similarly, when a clock at rest on a 
shell reads time interval dtshell , this time measurement is related 
to the corresponding Schwarzschild time interval dt by dtshell = 
A½ dt.  Thanks to spherical symmetry, dφshell = dφ.

The Schwarzschild coordinates (t,r,φ) of an event must be 
inferred from measurements made locally by shell observers, 
who send their data to headquarters where it is transformed from 
their local values (tshell, rshell, φshell) into (t,r,φ).  Such results are 
stitched together to make a global atlas in the Schwarzschild 
coordinates of events about M, and those coordinate differences 
fit together for pairs of nearby events according to Eq. (9).

From the interval of Eq. (9) we can work out the trajectory of 
a particle in free-fall about M.[8]  We are interested in a beam of 
light, for which dτ = 0.  Furthermore, light can be considered to 
be a swarm of photons, each having zero mass.  Before we find 
ourselves dividing by zero, let us work out the trajectory of a 
particle of nonzero mass m falling through a gravitational field.  
To describe light we will then take the limit as dτ → 0 and m → 0.

Recall from gravity-free special relativity that in a given 
inertial frame the energy of a free particle of mass m is E = 
mc2 dt/dτ in conventional units with m measured kg or eV/c2.  
Absorbing the c, this expression becomes E = m(dt/dτ) with 
m measured in electron volts.  Also recall that, in Newtonian 
mechanics, for motion of a particle acted on by a central force, 
its angular momentum has magnitude L = mr2(dφ/dt).   It turns 
out, in Schwarzschild spacetime, that E and L for a particle in 
free-fall are also constants of motion, and are given by

	  			   (11)
and
	 .			   (12)

These expressions for E and L are derived in the Appendix.  
For now we see that they revert to the Special Relativity and 
Newtonian expressions for E and L in the appropriate limits.  To 
proceed towards gravitational lensing, multiply Eq. (9) by m2A/
dτ2 then use Eqs. (11) and (12).[9]  Thereby may Eq. (9) be re-
arranged as

	  .	 (13)

To trace the trajectory of the light ray about the origin, we need 
to find r as a function of φ.  Thanks to the chain rule and Eq. (12) 
we may swap dr/dτ for dr/dφ:

	  		  (14)

which turns Eq. (13) into

	  	(15)
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With dτ gone and no m in any denominator, we can now set dτ 
= 0 and m = 0 for light.  It remains to determine E/L.  Since L 
and E are constants of motion, their value anywhere along the 
trajectory will be the same as their values far from the m-M 
interaction region.  Far away (at infinity) from M’s gravity 
special relativity holds, so that L at infinity can be written in 
terms of m’s linear momentum p as L = L∞ = p∞b = (E∞

2 – m2)½ b, 
where b denotes the impact parameter (Fig. 1), the lateral offset 
from a “bulls-eye” hit between m and M.  Thus for a photon for 
which m = 0, L/E = b.  These maneuvers turn Eq. (15) into

	  		  (16)

Refer now to Fig. 2.  

Fig. 1.  Geometry of the impact parameter.

Let R be the r-coordinate for the point of closest approach 
(assumed to be outside the Schwarzschild radius) between the 
photon and M.  Integrating Eq. (16) from r = R to r = ∞ gives 
half the angle swept out by the line from the origin to the photon 
as the photon comes in from infinity, gets deflected by M, and 
moves out to infinity.  Thus the total deflection Δφ that follows 
from Eq. (16) will be

	  		  (17)

The impact parameter b can be written in terms of A(R) as 
follows.  With the help of drshell = A−½ dr and dt shell = A½dt, it 
follows that drshell /dt shell   = (1/A)dr/dt.  With dτ = 0 in Eq. (9) for 
light, and with the help of Eqs (11) and (12) (the m will cancel 
out), and using L/E = b, it follows that 

	 		  (18)

At the point of closest approach drshell/dtshell = 0, and Eq. (18) 
yields

	  			   (19)

Using Eq. (19) in Eq. (17), making the change of variable u = 
R/r, and with ample use of the binomial theorem (since M*/r << 
1), the integral becomes

	  			  (20)

If M were not present, Δφ would equal π, so the deflection δ is 
Δφ – π, and thus

	  .			   (21)

We now have everything we need to treat the deflection 
of a light ray by a mass M as image formation by a thin lens 
(see Fig. 2).  Consider a spherically symmetric distribution of 
mass M and radius R, and let a photon from a distant source 
approach M along a line that would result in grazing incidence.  
In the jargon of thin lens equations, let so denote the object 
distance—the distance between the photon source and M; and 
let si denote the image distance—the distance between M and the 
observer.  The distances (or their r-coordinate correlates) so , si 
and R are illustrated in Fig. (2) which is not to scale, because so  
>> R and si  >> R.  These are typically safe approximations-- for 
cosmological applications, the object and image distances could 
be hundreds of millions to billions of light-years, with R the size 
of a galaxy cluster, tens of millions of light-years.  Closer to 
home, in the 1919 observations that affirmed Einstein, M* and 
R are the Sun’s mass and radius (M* ~ 1km, R ~ 1030 km), the 
image distance is eight light-minutes and the object distance (to 
another star) several light-years.  In Fig. 2 we approximate the 
geometry as Euclidean.

Fig. 2.  Geometry for Eqs. (22) and (23).

In Fig. 2 we see that light leaves the object and grazes M’s 
“surface” with impact parameter b, and that δ = θo + θi  Since the 
angles are small, this can be written

	  .			   (22)

Recall that M* << R so that A(R) ≈ 1 and thus b ≈ R is an 
approximation to Eq. (19), with which Eq. (22) becomes 
approximately

	  .			   (23)

This fits the template of a “thin lens equation,” Eq. (1), where 
by Eq. (19) the focal length is given by the gravitational lensing 
version of the lens maker’s equation,

	  		  (24)

which to leading order in M*/R is 1/f ≈ 4M*/R2 > 0, describing 
a converging lens.  Comparing this focal length to that of an 
ordinary lens described by Eq. (2), it appears that, within the 
model and approximations made here, the mass distribution 
producing gravitational lensing behaves like a plano-convex lens 
whose curved surface has radius R and whose index of refraction 
is n = 1 + 4M*/R = 1 + δ.

We have produced from a chain of simple calculations an 
approximate equivalence between gravitational lensing and 
ordinary thin lenses.  Of course, real gravitational lenses are 
more complicated than a sphere of radius R.  But most refractive 
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bodies are more complicated than lenses with perfectly spherical 
surfaces too.  The surfaces of wide-angle, low-aberration lenses 
used in smart phone cameras are described by polynomials of 
eighth or tenth order or higher.  Whether the application happens 
to be in optometry or astronomy, the thin-lens and lens maker’s 
equations are first approximations to more realistic models.  But 
this is the sort of thing that one does when doing physics: reduce 
a complicated phenomenon to something simple, even if it’s not 
very accurate.  That way one gains insight into the essentials, 
and gives more sophisticated models a special case to check 
against for consistency.

A popular illustration draws an analogy between the optical 
properties of the base of a wine glass and gravitational lensing, 
[10]  When the gravitational lens matter lies precisely along the 
line between the observer and a distant galaxy being imaged, 
the image seen is a ring, the so-called Einstein ring.  Similarly, 
when looking at a candle through the base of a wine glass, if the 
center of the base sits precisely between the candle flame and the 
observer (and the stem coincident with the line of sight), a full 
ring is seen.  If the wine glass base or the gravitational lens are 
not perfectly aligned between the object and the observer’s eye, 
then skewed images perpendicular to the ring are seen.

Raise your glass to Einstein’s rings, gravitational lensing, to 
ordinary lenses, and to the International Year of Light!

Appendix: Energy and Angular Momentum of a 
Particle in Free-Fall in Schwarzschild Spacetime
Fermat’s principle for geometrical optics asserts that, of all paths 
that connect two fixed points a and b in space, a light ray that 
goes between those points follows the path for which the elapsed 
time is a minimum.  A “Fermat’s Principle” exists for particles 
in free-fall as described by general relativity.  It says that of all 
trajectories connecting two fixed events a and b in spacetime, the 
trajectory actually followed by a particle in free-fall is the one 

for which the elapsed proper time is a maximum,  

[11] When spacetime is described by Schwarzschild coordinates, 
upon factoring out the dt from the right-hand side of (7) to give 

dτ = Λdt where , and the overdots 

denote derivatives with respect to t, the “Fermat’s principle” for 
free-fall says

	  	 (26)

In the language of the calculus of variations, Λ is recognized 
as the Lagrangian.  There are two canonical momenta, 

  and  .  The Hamiltonian is 

defined according to  which gives H = 

−A/Λ.  The equations of motion (Euler-Lagrange equations) 
yield two conservation laws: since ∂Λ/∂φ = 0, the momentum 
pφ conjugate to φ is conserved, so that r2(dφ/dτ) = const., 
whose Newtonian limit (dτ → dt) will be recognized as angular 
momentum per mass, L/m.  Another version of the Euler-

Lagrange equation says that , and because ∂Λ/∂t 

vanishes, H = −A/Λ = const.  But dτ = Λdt, and thus H = −A(dt/
dτ) = const. which we identify as –E with E the mechanical 
energy, because in non-dissipative mechanics, conservation 
of the Hamiltonian means conservation of energy, and the 
expression for a free particle’s energy in special relativity is E/m 
= dt/dτ and A → 1.  Thus in Schwarzschild geometry we identify 
A(dt/dτ) with E/m.  

For an alternate derivation of E and L that does not make 
explicit use of the Euler-Lagrange equations, canonical 
momenta and the Hamiltonian, see Taylor and Wheeler, Ref. 7, 
Chs. 3 and 4. r
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