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     If you are a musician or a music appreciator, 
you have encountered “sympathetic vibrations,” 
where striking one string of a piano or guitar 
makes nearby unstruck strings vibrate. As the 
vibrations of the struck string vibrate the 
surrounding air, the jiggling air makes 
neighboring strings vibrate too. Sympathetic 
vibrations are examples of coupled oscillations. A 
simple mathematical model of a coupled 
oscillator also beautifully describes diverse 
phenomena from ammonia masers to neutrino 
oscillations. The parameters are different, but 
they are described by essentially the same 
equations. 
     Coupled oscillations are manifestly visible in a 
classroom demonstration with two pendulums 
whose upper ends are attached to a common rod. 
When pendulum 1 swings it communicates its 
motion to the coupling rod, which eventually sets 
pendulum 2 in motion. Due to conservation of 
energy, as one pendulum swings more, the other 
swings less. As long as damping is negligible, the 
two pendulums take turns swinging with the 
larger amplitude. 
     To make a simple mathematical model that 
gets at the essence of the coupling, begin with 
two springs. Let the left and right spring have 
spring constant k, each attached to identical 
masses m. The springs are coupled by connecting 
them with a third spring with a spring constant k’ 
(Fig. 1). 

 
Figure 1. A coupled oscillator represented with springs 
with spring constants k, k’, and k. 

     Apply Newton’s second law to each of the two 
masses, using Hooke’s law to model the forces 
exerted on them by the springs. With the 
coordinates of Fig. 1, for the left spring (spring 1) 
we have 
 

−𝑘𝑘𝑥𝑥1 − 𝑘𝑘′(𝑥𝑥1 − 𝑥𝑥2)  =  𝑚𝑚�̈�𝑥1 (1a) 
 
and for the right spring (spring 2) Newton’s 
second law gives 
 

−𝑘𝑘𝑥𝑥2 − 𝑘𝑘′(𝑥𝑥2 − 𝑥𝑥1)  =  𝑚𝑚�̈�𝑥2 (1b) 
 
where overdots denote time derivatives. 
Regroup Eqs. (1) to collect coefficients of each 
coordinate: 
 

−(𝑘𝑘 + 𝑘𝑘′)𝑥𝑥1 + 𝑘𝑘′𝑥𝑥2  =  𝑚𝑚�̈�𝑥1 (2a) 
 

𝑘𝑘′𝑥𝑥1 − (𝑘𝑘 + 𝑘𝑘′)𝑥𝑥2  =  𝑚𝑚�̈�𝑥2.  (2b) 
 
Equations (2) present us with two equations and 
two unknowns for 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡). We can try 
two strategies: (a) solve for 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) 
separately, or (b) think of the two masses and the 
three springs as a single system and find the 
modes of its oscillation where each mode has a 
unique frequency—the so-called “normal 
modes,” a.k.a. the “eigenstates” of the system, 
with their corresponding frequency 
“eigenvalues” (German eigen = English own). 
Let’s look first at strategy (a). Then we’ll turn to 
strategy (b). 
 

(a)  Solving for 𝒙𝒙𝟏𝟏(𝒕𝒕) and 𝒙𝒙𝟐𝟐(𝒕𝒕) 
 

     To solve for 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) separately, since 
Eqs. (2) are linear in both variables they can be 
easily combined by superposition into two other 



equations, one for 𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡)  ≡ 𝜎𝜎(𝑡𝑡) and 
another one for 𝑥𝑥1(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡)  ≡ 𝛿𝛿(𝑡𝑡). Adding 
Eqs. (2a) and (2b) gives 
 

�̈�𝜎  + 𝜔𝜔ℓ
2𝜎𝜎 =  0 (3a) 

 
whereas subtracting Eq. (2b) from (2a) produces 
 

�̈�𝛿  +  𝜔𝜔ℎ
2𝛿𝛿 =  0 (3b) 

 
where  

𝜔𝜔ℓ ≡ �𝑘𝑘
𝑚𝑚

 (4a) 

 
is a lower frequency and 
 

𝜔𝜔ℎ ≡ �𝑘𝑘+2𝑘𝑘′
𝑚𝑚

  (4b) 

 
is a higher frequency. Equations (3) give the 
solutions 
 

𝜎𝜎(𝑡𝑡)  =  𝑎𝑎 sin(𝜔𝜔ℓ𝑡𝑡) + 𝑏𝑏 cos(ωℓt) (5a) 
 

𝛿𝛿(𝑡𝑡)  =  𝑝𝑝 sin(𝜔𝜔ℎ𝑡𝑡) + 𝑞𝑞 cos(𝜔𝜔ℎt) (5b) 
 
where a, b, p, and q are constants. Suppose the 
initial conditions include �̇�𝑥1(0) = �̇�𝑥2(0)  =  0,  
with both masses initially at rest. This means  
�̇�𝜎(0) = 0 = �̇�𝛿(0), which gives 𝑎𝑎 = 𝑝𝑝 =  0. But to 
produce oscillations, one of them has been 
displaced from equilibrium, then released at  
t = 0. Therefore, let 𝑥𝑥1(0) = 𝑏𝑏 and 𝑥𝑥2(0) = 0, 
which implies 𝑞𝑞 = 𝑏𝑏. Now Eqs. (5) are 
 
𝜎𝜎(𝑡𝑡)  = 𝑏𝑏 cos(𝜔𝜔ℓ𝑡𝑡)  =  𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡) (6a) 

and 
𝛿𝛿(𝑡𝑡)  = 𝑏𝑏 cos(𝜔𝜔ℎ𝑡𝑡)  =  𝑥𝑥1(𝑡𝑡)− 𝑥𝑥2(𝑡𝑡). (6b) 

 
Equations (6) can be inverted to give  
 

𝑥𝑥1(𝑡𝑡) = 𝑏𝑏
2

[cos(𝜔𝜔ℓ𝑡𝑡) + cos(𝜔𝜔ℎ𝑡𝑡)]             (7a) 

and 
𝑥𝑥2(𝑡𝑡)  =  𝑏𝑏

2
[cos(𝜔𝜔ℓ𝑡𝑡)  − cos(𝜔𝜔ℎ𝑡𝑡)].           (7b) 

 
 
The trig identities 

 
cos(𝛼𝛼) + cos(𝛽𝛽) = 2cos �𝛼𝛼+𝛽𝛽

2
� cos �𝛼𝛼−𝛽𝛽

2
� (8a) 

 
cos(𝛼𝛼) − cos(𝛽𝛽) = −2sin �𝛼𝛼+𝛽𝛽

2
� sin �𝛼𝛼−𝛽𝛽

2
�    (8b) 

 
allow Eqs. (7) to be written in a way that exhibits 
beats. The two frequencies result in a rapid 
oscillation of frequency (𝜔𝜔ℎ + 𝜔𝜔ℓ) 2⁄ , which is 
modulated by a slowly oscillating envelope of 
frequency (𝜔𝜔ℎ − 𝜔𝜔ℓ)/2.[1]    
 
𝑥𝑥1(𝑡𝑡) = 2𝑏𝑏 cos �(𝜔𝜔ℓ+𝜔𝜔ℎ)𝑡𝑡

2
� cos �(𝜔𝜔ℎ−𝜔𝜔ℓ)𝑡𝑡

2
� (9a) 

 
𝑥𝑥2(𝑡𝑡)  =  2𝑏𝑏 sin �(𝜔𝜔ℓ+𝜔𝜔ℎ)𝑡𝑡

2
� sin �(𝜔𝜔ℎ−𝜔𝜔ℓ)𝑡𝑡

2
�  (9b) 

 
Figure 2. An illustration of the motions 𝑥𝑥1(t) & 𝑥𝑥2(t). 
 

(b)  The Normal Modes 
 
     Return to Eqs. (2) and arrange them into a 
matrix equation, 
 

�−(𝑘𝑘 + 𝑘𝑘′) 𝑘𝑘′
𝑘𝑘′ −(𝑘𝑘 + 𝑘𝑘′)� �

𝑥𝑥1
𝑥𝑥2� = 𝑚𝑚��̈�𝑥1�̈�𝑥2

�. (10) 

 



Introducing column vectors and deploying the 
Dirac bracket notation,[2] let 

 

|𝑥𝑥⟩  ≡ �
𝑥𝑥1
𝑥𝑥2�. (11) 

 
Define a matrix K of spring constants: 
 

𝐾𝐾 ≡ �
(𝑘𝑘 + 𝑘𝑘′) −𝑘𝑘′
−𝑘𝑘′ (𝑘𝑘 + 𝑘𝑘′)�. (12) 

 
With Eqs. (11) and (12), Eq. (10) takes the 
abbreviated form 

 

−𝐾𝐾|𝑥𝑥⟩  =  𝑚𝑚𝑑𝑑2|𝑥𝑥⟩
𝑑𝑑𝑡𝑡2

. (13) 

 
In strategy (a) the two-mass system, as mapped 
by 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡), had two oscillations with 
different frequencies going on at the same time. 
We now set for ourselves the task of finding 
single-frequency modes of oscillation of the 
entire two-mass, three-spring system. This means 
we seek a set of two new position variables where 
each oscillates with some as-yet-unknown 
constant angular frequency. Let’s call these two 
modes 𝜂𝜂1 ≡  𝐴𝐴1cos(𝜔𝜔𝑡𝑡) and 𝜂𝜂2 ≡  𝐴𝐴2cos(𝜔𝜔𝑡𝑡), 
where 𝜔𝜔 is a constant angular frequency (or set of 
constant frequencies) to be determined. Let |𝜂𝜂(𝑡𝑡)⟩ 
denote these coordinates arranged as a special 
case of generic states |𝑥𝑥⟩, 
 

|𝜂𝜂(𝑡𝑡)⟩  =  �𝜂𝜂1(𝑡𝑡)
𝜂𝜂2(𝑡𝑡)� = �𝐴𝐴1𝐴𝐴2

� cos(𝜔𝜔𝑡𝑡)  

≡ |𝐴𝐴⟩ cos(𝜔𝜔𝑡𝑡) (14) 
 
where |𝐴𝐴⟩ is time-independent. Insert these 
coordinates—this eigenvector—into Eq. (13), 
which becomes (after cancelling cos(𝜔𝜔𝑡𝑡)) 
 

𝐾𝐾|𝐴𝐴⟩  =  𝑚𝑚𝜔𝜔2|𝐴𝐴⟩.  (15a) 
 
Transpose this into the form 
 

�−𝑚𝑚𝜔𝜔
2 + (𝑘𝑘 + 𝑘𝑘′) −𝑘𝑘′
−𝑘𝑘′ −𝑚𝑚𝜔𝜔2 + (𝑘𝑘 + 𝑘𝑘′)

� |𝐴𝐴⟩ 

= |0⟩ (15b) 
 
where |0⟩ means the zero vector. Now we appeal 
to the theorem of alternatives, a.k.a. the invertible 
matrix theorem.[3] Recall what it says about a 
homogeneous matrix equation of the form 
 

𝑀𝑀|𝑥𝑥⟩  = |0⟩ (16) 
 
with square matrix M and column matrix |𝑥𝑥⟩; Eq. 
(15b) is an example of such a matrix equation. 
There are two alternatives for |M|, the 
determinant of M: it is either zero or it is nonzero. 
If |𝑀𝑀| ≠ 0 the theorem shows that Eq. (16) has the 
unique but trivial solution |𝑥𝑥⟩ = |0⟩. But if |𝑀𝑀| =
0 the theorem guarantees a nontrivial but not 
unique solution. Since we want a nontrivial 
solution, we set to zero the determinant of the 
square matrix in Eq. (15b) and solve for 𝜔𝜔. We get 
 

𝜔𝜔 =  �𝑘𝑘+𝑘𝑘′±𝑘𝑘′
𝑚𝑚

  (17a) 

 
choosing the positive sign when taking the 
square root since frequencies are non-negative. 
There are two distinct roots. The minus sign 
under the radical gives 
 

𝜔𝜔ℓ = �𝑘𝑘
𝑚𝑚

  (17b) 

and from the plus sign, 
 

𝜔𝜔ℎ =  �𝑘𝑘+2𝑘𝑘′
𝑚𝑚

  (17c) 

 
[compare to Eqs. 4]. These results—two angular 
frequency eigenvalues—means there are two 
modes of vibration, each with its distinctive 
frequency. Let’s see what kinds of vibrations 
these eigenvalues imply. To do this we take one 
eigenvalue at a time, insert it into Eq. (15a), and 
see what ratio 𝐴𝐴2 𝐴𝐴1⁄  results. without further 
assumptions we can’t do better than the relative 
values of these amplitudes because the theorem 



of alternatives promised a nontrivial solution but 
not a unique one. 
     Begin with 𝜔𝜔ℓ of Eq. (17b). When inserted in 
Eq. (15a) this gives the pair of equations 
 

𝑘𝑘′𝐴𝐴1  − 𝑘𝑘′𝐴𝐴2  =  0 (18a) 
 

−𝑘𝑘′𝐴𝐴1 + 𝑘𝑘′𝐴𝐴2  =  0. (18b) 
 
Both yield 𝐴𝐴1 =  𝐴𝐴2  ≡  𝑎𝑎. Label as |𝜂𝜂ℓ⟩ the state 
|𝜂𝜂⟩ that has  𝜔𝜔ℓ for its eigenvalue. Omitting the 
time dependence in the eigenstates for now by 
setting t = 0 in Eq. (14), so far we have 
 

|𝜂𝜂ℓ(0)⟩  =  𝑎𝑎 �1
1�. (19a) 

 
When we repeat this procedure but insert 𝜔𝜔ℎ 
into Eq. (15a), we find that 𝐴𝐴2 = −𝐴𝐴1 so that at  
t = 0 we find this eigenstate |𝜂𝜂ℎ⟩ to be 

 

               |𝜂𝜂ℎ(0)⟩  =  𝑎𝑎 �   1
−1�. (19b) 

 
Restoring the time dependence via Eq. (14), 
within the scaling factor a we now have the 
eigenstates with their respective eigenvalues: 
 

|𝜂𝜂ℓ(0)⟩ =  𝑎𝑎 �1
1� cos(𝜔𝜔ℓ𝑡𝑡)  (20a) 

 

|𝜂𝜂ℎ(0)⟩  =  𝑎𝑎 �   1
−1� cos(𝜔𝜔ℎ𝑡𝑡). (20b) 

 
What kinds of motions do these states describe?  
Let us appropriate Eq. (11) for each of the 
eigenvectors. For |𝜂𝜂ℓ(𝑡𝑡)⟩ we can write 

 
       |𝜂𝜂ℓ(0)⟩ =  𝑎𝑎 �1

1� cos(𝜔𝜔ℓ𝑡𝑡)  =  �
𝑥𝑥1
𝑥𝑥2� (21a) 

 
which says that 𝑥𝑥1 = 𝑥𝑥2. If spring 1 moves its mass 
to the right by 1 cm, then spring 2 simultaneously 
moves its mass to the right by 1 cm too. This 
behavior is illustrated in Fig. 3a. For the 
eigenvector |𝜂𝜂ℎ(𝑡𝑡)⟩ we have 
 

|𝜂𝜂ℎ(0)⟩  =  𝑎𝑎 �   1
−1� cos(𝜔𝜔ℎ𝑡𝑡)  =  �

𝑥𝑥1
𝑥𝑥2� (21b) 

 
which says that 𝑥𝑥1 = −𝑥𝑥2.   If spring 1 moves its 
mass to the right by 1 cm, then spring 2 
simultaneously moves its mass to the left by 1 cm. 
This behavior for the coupled oscillators is 
illustrated in Fig. 3b. When vibrating in one of the 
eigenstate modes, the two masses move together 
in a single-frequency choreography.  

 
Figure 3. The two eigenstate modes for the coupled 
oscillator: (a) the mode of Eq. (21a) with angular 
frequency ωℓ, and (b) the mode of Eq. (21b) of angular 
frequency ωh. 
 

Eigenvectors as a Basis 
 
     The original set of state vectors of Eq. (11) 
expresses the instantaneous state of the coupled 
oscillators. Analogous to how a vector r in the 
Euclidean plane can be written as 𝐫𝐫 = 𝑥𝑥1�̂�𝐢  +  𝑥𝑥2�̂�𝐣, 
the abstract state vector |𝑥𝑥⟩ can be split into a 
superposition of “basis vectors” as follows: 
 

|𝑥𝑥⟩ = �
𝑥𝑥1
𝑥𝑥2� =  𝑥𝑥1 �

1
0�+ 𝑥𝑥2 �

0
1� 

                         ≡ 𝑥𝑥1|1⟩  +  𝑥𝑥2 |2⟩ (22) 
 
where 

 

|1⟩  ≡ �1
0�  (23a) 

and 

|2⟩  ≡ �0
1�.   (23b) 

 
These are the basis vectors of the “1-2 basis.”  Let 
⟨𝑥𝑥| be the row vector made by transposing the 

A B 



column vector |𝑥𝑥⟩ (when we get to quantum 
mechanics, which uses complex numbers, ⟨𝑥𝑥| will 
be the transpose and complex conjugate of |𝑥𝑥⟩). 
Then by the rules of matrix multiplication, the 
scalar product (a.k.a. the “dot product”) between 
two vectors can be written 〈𝑥𝑥|𝑦𝑦〉. Like �̂�𝐢 and �̂�𝐣, we 
see that |1⟩ and |2⟩  are also “orthonormal”, a 
hybrid word which means they are orthogonal: 
〈1|2〉 =  0; and they are unit vectors, i.e., 
“normalized” to have magnitude unity: 〈1|1〉 =
 〈2|2〉 =  1. An orthonormality condition can be 
summarized by saying 〈𝑖𝑖|𝑗𝑗〉 =  𝛿𝛿𝑖𝑖𝑖𝑖, where  𝛿𝛿𝑖𝑖𝑖𝑖 
denotes the “Kronecker delta,” equal to 1 if 𝑖𝑖 = 𝑗𝑗 
and 0 if 𝑖𝑖 ≠ 𝑗𝑗.  Any state vector in two-
dimensional space can be written as a 
superposition of |1⟩ and |2⟩, as Eq. (22) illustrates. 
As basis vectors, |1⟩ and |2⟩ are said to “span the 
space.”  Equivalent to the statement that |1⟩ and 
|2⟩ form an orthonormal basis is the statement 
that they satisfy the “completeness relation,”[2] 
 

|1⟩⟨1| + |2⟩⟨2|  =  1�  (24) 
 
where 1�  denotes the unit matrix, which in the 
case before us is 2×2. The eigenstates form another 
orthonormal basis in the same space. 
     We have seen how the theorem of alternatives 
guarantees nontrivial but nonunique solutions. 
In our example this shows up in the arbitrary 
scale factor a that, in this system, is common to 
|𝜂𝜂ℓ(𝑡𝑡)⟩ and |𝜂𝜂ℎ(𝑡𝑡)⟩. To determine a we push 
farther. We have the freedom to make these 
eigenvectors be unit vectors. In so doing they 
form a set of orthonormal basis vectors.[4]  
Eigenvectors do not have to be unit vectors in 
order to be a basis, but why would you give �̂�𝐢 or 
�̂�𝐣 a magnitude of 2 or 17—those factors would 
have to be divided out of your calculations. So 
let’s normalize the eigenvectors |𝜂𝜂ℓ(𝑡𝑡)⟩ and 
|𝜂𝜂ℎ(𝑡𝑡)⟩. This determines the scale factor a. 
Requiring 〈𝜂𝜂ℓ|𝜂𝜂ℓ〉 =  1 and 〈𝜂𝜂ℎ|𝜂𝜂ℎ〉 =  1 gives 𝑎𝑎 =
 1 √2⁄  in both cases, and therefore from Eqs. (19),  
 

|𝜂𝜂ℓ(0)⟩. =  1
√2
�1

1�  (25a) 

and 

|𝜂𝜂ℎ(0)⟩. =  1
√2
�   1
−1�.  (25b) 

 
You can verify their orthogonality, 〈𝜂𝜂ℓ|𝜂𝜂ℎ〉  = 0, 
and, now normalized, that they satisfy the 
completeness relation at t = 0, 
 

|𝜂𝜂ℓ(0)⟩⟨𝜂𝜂ℓ(0)| + |𝜂𝜂ℎ(0)⟩⟨𝜂𝜂ℎ(0)|  =  1� . (26b) 
 

The next installment will investigate the 
connection to two-state systems and neutrino 
oscillations.  
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