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Coupled Oscillations in Diverse Phenomena 
Part 3: Neutrino oscillations 

by Dwight E. Neuenschwander, Physics Professor, Southern Nazarene University 
 

Parts 1 and 2 of this article appeared in the Spring and Fall 2022 issues of Radiations and are available 
at www.sigmapisigma.org/sigmapisigma/radiations/archive. Numbering in Part 3 continues from the 
previous parts.  
 
Editor’s note: We inadvertently created a new—and meaningless—matrix notation when we published 
Part 2. Our sincere apologies to author Dwight Neuenschwander and to you, our readers. The version 
available on our website has been corrected. 

 
The Backstory 

 
The neutrino 𝜈𝜈𝜈𝜈 (“little neutral one”) was postulated by 
Wolfgang Pauli in 1930 to save the principles of energy 
and angular momentum conservation in beta decay. 
Without knowing about the neutrino, an observed reaction 
seemed to be 𝑛𝑛𝑛𝑛 → 𝑝𝑝𝑝𝑝 + 𝑒𝑒𝑒𝑒−. Consider energy: for the decay 
of a free neutron, in the neutron’s rest frame the 
conservation of energy gives 

 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐2 = �𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒�𝑐𝑐𝑐𝑐2 +  𝐾𝐾𝐾𝐾𝑒𝑒𝑒𝑒 +  𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝 (44) 

where K denotes kinetic energy, and by conservation of 
momentum [6], 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒. (45) 

Equations (44) and (45) together imply a unique 
kinetic energy for the emitted electron. Most neutrons 
reside in nuclei, and for the beta decay that turns, say, 
boron-12 into carbon-12, in the absence of neutrinos the 
unique kinetic energy of the electron would be 13.37 MeV. 
However, the actual kinetic energies of the electrons 
emitted in boron-12 beta decay range across the 
continuum from zero to 13.37 MeV. As Pauli realized, the 
presence of a third emitted particle offers an infinite 
number of ways to partition the kinetic energy and 
momentum, allowing the continuum of electron kinetic 
energies while preserving energy conservation. This third 
particle must have zero charge, since electric charge is 
conserved and the charges are already accounted for. 
Furthermore, it would have to interact ever so weakly 
since it slipped under the detection threshold of original 
instrumentation, suggesting the neutrino has very little if 
any mass. (According to neutrino reaction cross sections 
eventually measured, if a beam of neutrinos was sent 
through a block of lead a light-year thick, most of them 
would emerge out the other side!) The very weakness of 
neutrino interactions allows observations so far to give 

only upper bounds to the particle’s observables, such as 
its mass and magnetic dipole moment; typically, these 
quantities are taken to be zero, which, if not exactly 
correct, are good approximations.  

The neutrino (actually the antineutrino 𝜈𝜈𝜈𝜈𝜈) was first 
detected in 1956 when a team led by Frederick Reines 
and Clyde Cowan took advantage of the high antineutrino 
flux of the new Savannah River nuclear power plant to 
compensate for the particle’s low-probability interactions. 
Beta decays coming from the byproducts of the fission 
include the abundant reaction  

 𝑝𝑝𝑝𝑝 →  𝑛𝑛𝑛𝑛 + 𝑒𝑒𝑒𝑒− + 𝜈𝜈𝜈𝜈𝜈.  

Then and now, neutrinos and antineutrinos are detected 
indirectly by detecting the particles they produce in 
reactions. According to theory, the antineutrino from beta 
decay can drive the reaction, 

 𝜈𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 +  𝑝𝑝𝑝𝑝 →  𝑛𝑛𝑛𝑛 + 𝑒𝑒𝑒𝑒+.  

The position immediately annihilates with an electron to 
produce two 0.511 MeV gamma-ray photons, and in the 
Reines-Cowan experiment the neutron is absorbed by 
cadmium (with which the newly developed organic liquid 
scintillator detector was spiked) to produce a 9 MeV 
photon. The delay of a few microseconds between the 
production of the 0.511 MeV and 9 MeV photons allows a 
delayed-coincidence detection of the photons through an 
array of photomultiplier tubes [7]. 

As we presently understand the zoo of elementary 
particles, the fermions that participate in the strong and 
weak forces are the quarks, and the fermions that do not 
participate in the strong force are the leptons, whose most 
common representatives are the electron and its 
corresponding neutrino. There are three “flavors” (as they 
are whimsically called) of quarks and leptons; only the 
leptons concern us here [8], and the three lepton flavors 
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are the electron 𝑒𝑒𝑒𝑒− and its neutrino 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒; the muon 𝜇𝜇𝜇𝜇− and 
its neutrino 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇; and the tau 𝜏𝜏𝜏𝜏− and its neutrino 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏—and 
their antiparticles. They all carry spin ½; the electron, 
muon, and tau carry negative charge (their antiparticles 
carry positive charge). The electron’s mass is about ½ 
MeV/𝑐𝑐𝑐𝑐2, the muon mass about 106 MeV/𝑐𝑐𝑐𝑐2, and the tau 
mass about 1777 MeV/𝑐𝑐𝑐𝑐2. Lepton flavor is so far evidently 
conserved (approximately if not exactly so) [9]; electron-
type neutrinos go with electrons, muon neutrinos with 
muons, and tau neutrinos with taus. The appearance of 
neutrinos is the hallmark of the weak interaction in 
reactions such as 

 𝑛𝑛𝑛𝑛 → 𝑝𝑝𝑝𝑝 +  𝑒𝑒𝑒𝑒− + 𝜈̅𝜈𝜈𝜈𝑒𝑒𝑒𝑒 (46a) 

 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏 + 𝑛𝑛𝑛𝑛 → 𝑝𝑝𝑝𝑝 + 𝜏𝜏𝜏𝜏− (46b) 

 𝜇𝜇𝜇𝜇− +  𝑝𝑝𝑝𝑝 → 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇 + 𝑛𝑛𝑛𝑛 (46c) 

and so on. 
 

The Solar Neutrino Problem 
 

In the mid-1960s the famous “solar neutrino problem” 
surfaced. In the sun’s core electron-type neutrinos are 
produced in the first step of the proton-proton cycle of 
nuclear fusion, 𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝 → 𝐻𝐻𝐻𝐻12 + 𝑒𝑒𝑒𝑒+ +  𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒. Since neutrinos 
interact so weakly, they escape the sun at once, and each 
one carries no more than about 20 MeV of energy. Some 
of them pass through Earth. The neutrino detector in the 
Homestake Mine in South Dakota first raised the alarm 
about the solar neutrino problem. Headed by Raymond 
Davis, the experiment, which ran from 1970 to 1994, 
featured a large tank of dry-cleaning fluid, carbon 
tetrachloride CCl4. It detects solar neutrinos through the 
reaction 

 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + 𝑛𝑛𝑛𝑛 → 𝑝𝑝𝑝𝑝 + 𝑒𝑒𝑒𝑒−. (46d) 

When this reaction occurs in a chlorine nucleus, it 
becomes the nucleus of the noble gas argon, which 
bubbles out to be collected. After several years of data 
collecting, the observed flux of neutrinos was about 2/3 
short of the prediction, even when the solar models took 
into account other fusion channels such as the CNO cycle 
in addition to the p-p cycle. 

The fact that neutrinos from the sun carry less than 
20 MeV but the muon and tau masses are 106 and 1777 
MeV/𝑐𝑐𝑐𝑐2, respectively, means that even if the neutrino 
could, somehow, produce the reaction, 𝜈𝜈𝜈𝜈 + 𝑛𝑛𝑛𝑛 → 𝑝𝑝𝑝𝑝 + 𝜇𝜇𝜇𝜇−; in 
other words, if muon neutrinos were somehow in the mix 
of incoming solar neutrinos, they would still not have 
enough energy to make the muon appear in the chlorine-
to-argon reaction. The insensitivity of the CCl4 to muon 
neutrinos was suggestive. The most promising solution, 
first published by Bruno Pontecorvo in 1957 [10], could 

explain the discrepancy while allowing conservation of 
lepton number and lepton flavor in interactions (particles 
and antiparticles have opposite signs of these numbers). 
Pontecorvo suggested the possibility that a neutrino 
oscillates between flavors as it travels freely, not 
interacting with anything! In other words, a 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 traveling 
freely might change into a 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇, then into a 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏, or back into 
a 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒. This is a coupled oscillator problem. The coupling 
and the frequency of this oscillation depend on two 
neutrino species having a mass difference. 

To model this business mathematically, the moment 
of epiphany comes with realizing that when propagating 
freely the neutrino state is a mass eigenstate, but when 
interacting the neutrino state is a flavor eigenstate. The 
flavor eigenstates are what we mean when saying a 
neutrino is an electron neutrino 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒, or a muon neutrino 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇, 
or a tau neutrino 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏. The mass eigenstates are 
superpositions of the flavor eigenstates, and, conversely, 
the flavor eigenstates are superpositions of mass 
eigenstates—which means that “the” mass of a 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 or 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇 or 
𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏 particle is not well defined. Be that as it may, the mass 
and flavor eigenstates form two complete sets of basis 
vectors in the abstract space of all neutrino states. We will 
consider the role of neutrino mass in flavor-changing from 
two perspectives: (1) as an eigenvalue problem, and (2) 
from a rotation-of-axes perspective. Of course, the 
approaches are two ways of doing the same thing, but it 
may be instructive to examine both, not only for our 
understanding of neutrinos, but also to deepen our 
appreciation of what eigenvectors and eigenvalues are all 
about. 
 
(1) Neutrino state eigenvectors 
 

For simplicity, let’s consider only two neutrino 
species. Begin with two mass eigenstates: neutrino state 
𝜈𝜈𝜈𝜈1 carries a definite mass 𝑚𝑚𝑚𝑚1, and neutrino state 𝜈𝜈𝜈𝜈2 carries 
a definite mass 𝑚𝑚𝑚𝑚2. To reiterate, these neutrinos do not 
have a unique flavor; they are superpositions of two 
flavors.  

The quantum wave function 𝜈𝜈𝜈𝜈𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) of a freely 
propagating neutrino may be written with the usual 
quantum phase factor for a free particle of momentum p 
and energy E where, assuming for simplicity that the 
particle moves in only one spatial dimension x, 

 𝜈𝜈𝜈𝜈𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) ℏ⁄  (47) 

where n = 1 or 2, and where 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 is a constant. 
Since the neutrino masses are very small if not zero, 

we may assume these particles move through the lab 
frame with speeds 𝑣𝑣𝑣𝑣 ≈ 𝑐𝑐𝑐𝑐. Therefore 𝑥𝑥𝑥𝑥 ≈ 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡. The 
momentum p can be extracted from the relativistic 
energy-momentum relation for a free particle,  

 𝐸𝐸𝐸𝐸2 − (𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐)2 = (𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2)2. (48a) 
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Since m is small, using a binomial expansion gives 

 
𝐸𝐸𝐸𝐸 𝐸 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 +

(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2)2

2𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐
 

(48b) 

 
and again, since m is small, we may use 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  ⁄  in the 
denominator of Eq. (48b): 

  
𝐸𝐸𝐸𝐸 𝐸 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 +

(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2)2

2𝐸𝐸𝐸𝐸
. 

(48c) 

In solving Eq. (48c) for p and recalling 𝑥𝑥𝑥𝑥 ≈ 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡, Eq. (47) 
becomes  

 𝜈𝜈𝜈𝜈𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) ≈  𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸 (49) 

where 

 
𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛 ≡

(𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐2)2

2𝐸𝐸𝐸𝐸𝐸
 . 

(50) 

These two neutrino states, each of definite mass, can 
be arranged as a vector in the abstract space inhabited 
by two neutrino species. In the two-dimensional “mass 
basis” an arbitrary neutrino state is 

 
|𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩  =  �

𝜈𝜈𝜈𝜈1
𝜈𝜈𝜈𝜈2� =  �𝐴𝐴𝐴𝐴1𝑒𝑒𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1𝐸𝐸𝐸𝐸

𝐴𝐴𝐴𝐴2𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝐸𝐸𝐸𝐸
�. 

(51) 

Requiring all the mass to reside somewhere among 
neutrino species 1 and 2 gives the constraint 

  〈𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉  =  1 (52a) 

which with Eq. (51) yields 

 |𝐴𝐴𝐴𝐴1|2 + |𝐴𝐴𝐴𝐴2|2  =  1 (52b) 

so the 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 can be parameterized as 

 𝐴𝐴𝐴𝐴1 = cos 𝜃𝜃𝜃𝜃 (52c) 

 𝐴𝐴𝐴𝐴2 = sin 𝜃𝜃𝜃𝜃 (52d) 

for some real number 𝜃𝜃𝜃𝜃. 
We are saying that the state of a freely propagating 

neutrino is an eigenstate of a Hamiltonian 𝐻𝐻𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 whose 
eigenvalues include the masses 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛. That Hamiltonian 
would be 

 𝐻𝐻𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ℏ �𝜔𝜔𝜔𝜔1 0
0 𝜔𝜔𝜔𝜔2

� (53) 

because in the Schrödinger equation the states of Eq. 
(49) give 𝐻𝐻𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝜈𝜈𝜈𝜈𝑛𝑛𝑛𝑛⟩  =  ℏ𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛|𝜈𝜈𝜈𝜈𝑛𝑛𝑛𝑛⟩. 

The neutrinos of definite flavor in the weak 
interactions, 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒, 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇, and 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏, are not eigenstates of 𝐻𝐻𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 
They can, however, be written as superpositions of the 
definite-mass neutrino eigenstates. Considering that we 
are using only two neutrino species, say 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 and 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇 [11], 
using Eqs. (51) and (52c-d) we may write for the electron 
neutrino 

 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) =  𝑎𝑎𝑎𝑎1𝜈𝜈𝜈𝜈1(𝑡𝑡𝑡𝑡) +  𝑎𝑎𝑎𝑎2𝜈𝜈𝜈𝜈2(𝑡𝑡𝑡𝑡)  

             = 𝑎𝑎𝑎𝑎1 cos 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1𝐸𝐸𝐸𝐸  +  𝑎𝑎𝑎𝑎2 sin 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝐸𝐸𝐸𝐸 (54a) 

and for the muon neutrino 

   𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡) = 𝑏𝑏𝑏𝑏1 cos 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1𝐸𝐸𝐸𝐸  +  𝑏𝑏𝑏𝑏2 sin 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝐸𝐸𝐸𝐸 (54b) 

where 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 and 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 are constants. 
These neutrino states, along with 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏(𝑡𝑡𝑡𝑡), are flavor 

eigenstates of the weak-interaction Hamiltonian. The 
weak interactions can preserve flavor, such as  

 𝜇𝜇𝜇𝜇+ + 𝜇𝜇𝜇𝜇− → 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇 + 𝜈𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇 (55a) 

or they can change flavor without violating any lepton 
flavor conservation laws (the particle and antiparticles of 
the same flavor have opposite-sign lepton numbers), such 
as 

 𝜇𝜇𝜇𝜇+ + 𝜇𝜇𝜇𝜇− → 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + 𝜈𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒. (55b) 

For generic interactions that allow both flavor-preserving 
and flavor-changing events, we can parameterize the 
neutrino interaction Hamiltonian (still in two-dimensional 
neutrino state space) as 

 
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �

𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒𝜇𝜇𝜇𝜇
𝐻𝐻𝐻𝐻𝜇𝜇𝜇𝜇𝑒𝑒𝑒𝑒 𝐻𝐻𝐻𝐻𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

� ≡  �𝛼𝛼𝛼𝛼 𝛼𝛼𝛼𝛼
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 �. 

(56) 

These matrix elements will depend on the weak force 
parameters such as the Fermi coupling constant GF.  The 
diagonal elements describe weak interactions that 
preserve lepton flavor, such as the reaction of (55a) and 
scattering events like 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒− → 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒−. The off-diagonal 
elements describe weak interactions where the incoming 
and outgoing neutrinos have different flavors, such as 
reaction (55b) or 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒+ → 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇+. But note that we have 
seen this sort of Hamiltonian before.  

To find out what the 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 and 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 in Eqs. (54) are, the 
eigenvalue problem for 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 falls readily to hand, because 
its eigenvectors are the electron and muon neutrinos.  

To proceed, for the Hamiltonian of Eq. (56) we 
parameterize its eigenstates as 

 |𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⟩  =  �
𝑝𝑝𝑝𝑝
𝑞𝑞𝑞𝑞� 𝑒𝑒𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ℏ⁄  (57) 
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where p and q are independent of time. Now the 
Schrödinger equation becomes 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⟩  =  𝜆𝜆𝜆𝜆|𝜈𝜈𝜈𝜈𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⟩. (58) 

Our task is to find the eigenvalues 𝜆𝜆𝜆𝜆 through the 
application of the theorem of alternatives and then use 
these eigenvalues in Eq. (58) to find the eigenvectors 
normalized to unit magnitude. But this is mathematically 
identical to the ammonia molecule problem, so we have 
done this before. It follows that 𝜆𝜆𝜆𝜆 =  𝛼𝛼𝛼𝛼 ± 𝛽𝛽𝛽𝛽, and the 
corresponding normalized time-independent portion of 
the eigenvectors of Eq. (51) are 

  �
𝑝𝑝𝑝𝑝
𝑞𝑞𝑞𝑞�𝑖𝑖𝑖𝑖=𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼

 =  
1
√2

�1
1� (59a) 

and    

 �
𝑝𝑝𝑝𝑝
𝑞𝑞𝑞𝑞�𝑖𝑖𝑖𝑖=𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼

 =  
1
√2

�   1
−1�. (59b) 

Let us suppose that the 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 eigenvalue belongs to 
the electron neutrino. This means that Eqs. (59a) and 
(54a) at t = 0 are the same state, so that 

 1
√2

�1
1�  =  �𝑎𝑎𝑎𝑎1 cosθ

𝑎𝑎𝑎𝑎2 sinθ� (60) 

and therefore 1
√2

= 𝑎𝑎𝑎𝑎1cosθ and 1
√2

= 𝑎𝑎𝑎𝑎2sinθ, suggesting as 
a solution (not the unique solution, remember the theorem 
of alternatives) 𝑎𝑎𝑎𝑎2 =  𝑎𝑎𝑎𝑎1  ≡ 𝑎𝑎𝑎𝑎, which then requires sin 𝜃𝜃𝜃𝜃 =
cos 𝜃𝜃𝜃𝜃  =  1 √2⁄  and 𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋 4⁄ . Restoring the time 
dependence by letting t be nonzero in Eq. (54a), we have 
the electron neutrino wave function expressed as 
superpositions of the mass eigenstate wave functions: 

 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) =  
𝑎𝑎𝑎𝑎
√2

(𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1𝐸𝐸𝐸𝐸 +  𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝐸𝐸𝐸𝐸). (61a) 

Carrying out the same procedure by identifying the 𝛼𝛼𝛼𝛼 𝛼𝛼𝛼𝛼𝛼  
eigenvalue with the muon-type neutrino produces 

 
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡) =  

𝑏𝑏𝑏𝑏
√2

(𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1𝐸𝐸𝐸𝐸 − 𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝐸𝐸𝐸𝐸). 
(61b) 

Given the 1 √2⁄  in both flavor eigenstates, it appears that 
in the abstract space of neutrino states the flavor 
eigenstates are rotated by 45 degrees relative to the mass 
eigenstates. Let  

 𝜔𝜔𝜔𝜔2 =  𝜔𝜔𝜔𝜔1 +  𝛿𝛿𝛿𝛿. (62) 

Then the flavor eigenstates can be written 

 
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) =  √2 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖(𝜔𝜔𝜔𝜔1+ 𝛿𝛿𝛿𝛿 𝛿⁄ )𝐸𝐸𝐸𝐸 cos �

𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡
2
� 

(63a) 

 
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡) =  √2 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖(𝜔𝜔𝜔𝜔1+ 𝛿𝛿𝛿𝛿 𝛿⁄ )𝐸𝐸𝐸𝐸 sin �

𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡
2
�. 

(63b) 

The probability of a neutrino being an electron 
neutrino at time t is 

 
𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) =  |𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒|2 =  2𝑎𝑎𝑎𝑎2cos2 �

𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥
2𝑐𝑐𝑐𝑐
� 

(64a) 

and the probability of it being a muon neutrino at time t is 

 
𝑃𝑃𝑃𝑃𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)  =  |𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇|2 =  2𝑏𝑏𝑏𝑏2sin2 �

𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥
2𝑐𝑐𝑐𝑐
�. 

(64b) 

If these were the only two neutrino flavors, then as long 
as the neutrino exists, 

 1 =  𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) +  𝑃𝑃𝑃𝑃𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡) =  2(𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏2) (65) 

or 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏2 = ½, which allows these coefficients to be 
parameterized as 𝑎𝑎𝑎𝑎 =  1

√2
cos𝜙𝜙𝜙𝜙 and 𝑏𝑏𝑏𝑏 =  1

√2
sin𝜙𝜙𝜙𝜙 for some 

angle 𝜙𝜙𝜙𝜙 to be fit to data.  
 
(2) Rotation of axes 
 

Return to the concept that any two neutrino flavor 
states are a superposition of states of definite mass: 

 �
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇� =  �

𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2
𝑏𝑏𝑏𝑏1 𝑏𝑏𝑏𝑏2� �

𝜈𝜈𝜈𝜈1 
𝜈𝜈𝜈𝜈2 � (66) 

which can be abbreviated as 

 �𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�  =  Λ�𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩ (67) 

where 

 |𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�  =  �
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇� (68a) 

 |𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩  = �
𝜈𝜈𝜈𝜈1 
𝜈𝜈𝜈𝜈2 � (68b) 

and Λ is the square matrix in Eq. (66). So long as the 
neutrino exists—whatever its flavor and mass—we 
require 

 〈𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓|𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓〉  =  〈𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉. (69) 

The adjoint (denoted with †, the transpose and complex 
conjugate) of Eq. (66) gives 

 �𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓|  =  ⟨𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|Λ†. (70) 

Now Eq. (69) becomes 
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 ⟨𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�Λ†Λ�𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩  =  ⟨𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩ (71) 

 
which requires 

 Λ†Λ = 1�  (72a) 

(one says that Λ is “unitary”), which in detail requires 

 �𝑎𝑎𝑎𝑎
∗
1 𝑏𝑏𝑏𝑏∗1

𝑎𝑎𝑎𝑎∗2 𝑏𝑏𝑏𝑏∗2
� �
𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2
𝑏𝑏𝑏𝑏1 𝑏𝑏𝑏𝑏2� = �1 0

0 1�. (72b) 

This condition implies 

 |𝑎𝑎𝑎𝑎1|2 + |𝑎𝑎𝑎𝑎2|2 =  1 (72c) 

 |𝑏𝑏𝑏𝑏1|2 + |𝑏𝑏𝑏𝑏2|2 =  1 (72d) 

and 

 𝑎𝑎𝑎𝑎∗2𝑎𝑎𝑎𝑎1 + 𝑏𝑏𝑏𝑏1𝑏𝑏𝑏𝑏∗2 =  0. (72e) 

All of these constraints are consistent with 

 Λ = �    cos 𝜃𝜃𝜃𝜃 sin 𝜃𝜃𝜃𝜃
− sin 𝜃𝜃𝜃𝜃 cos 𝜃𝜃𝜃𝜃�. (73) 

Now Eq. (66), informed by Eq. (73) and with Eq. (49) 
showing the time dependence explicitly, becomes 

 �
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)�

=  �    cos 𝜃𝜃𝜃𝜃 sin 𝜃𝜃𝜃𝜃
− sin 𝜃𝜃𝜃𝜃 cos 𝜃𝜃𝜃𝜃� �

𝜈𝜈𝜈𝜈1(0)𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔1𝐸𝐸𝐸𝐸 
𝜈𝜈𝜈𝜈2(0) 𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔2𝐸𝐸𝐸𝐸

�. 
(74) 

The transformation from neutrino states of definite mass 
to states of definite flavor is merely a rotation of axes in 
the abstract two-dimensional space of neutrino states. 

Our goal is to predict the probability that a neutrino 
which begins its life at time t = 0 as an electron neutrino 
will turn into a muon neutrino at time t > 0. In other words, 
we intend to calculate |〈𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)|𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)〉|2. To prepare the 
way, the time dependence of the mass eigenstates can 
be factored out of Eq. (74) as follows: 

 �
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)� =  

�    cos𝜃𝜃𝜃𝜃 sin 𝜃𝜃𝜃𝜃
− sin 𝜃𝜃𝜃𝜃 cos 𝜃𝜃𝜃𝜃� �

    𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔1𝐸𝐸𝐸𝐸 0
0 𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔2𝐸𝐸𝐸𝐸

� �
𝜈𝜈𝜈𝜈1(0)
𝜈𝜈𝜈𝜈2(0)�. 

(75a) 

This gives, at t = 0, the relation 

 �
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(0)� = �    cos 𝜃𝜃𝜃𝜃 sin 𝜃𝜃𝜃𝜃

− sin 𝜃𝜃𝜃𝜃 cos 𝜃𝜃𝜃𝜃� �
𝜈𝜈𝜈𝜈1(0)
𝜈𝜈𝜈𝜈2(0)� 

(75b) 

[which could be shown from Eq. (74), but the matrix with 
the exponential elements will prove useful]. In other 
words, 

 �𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(0)� =  Λ�𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(0)⟩ (76a) 

 
from which it follows that 

 Λ−1 |𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(0) � = |𝜈𝜈𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(0)⟩. (76b) 

From Eq. (72a) we see that Λ−1 = Λ†, therefore 

 Λ† = �  cos 𝜃𝜃𝜃𝜃 −sin 𝜃𝜃𝜃𝜃
 sin 𝜃𝜃𝜃𝜃    cos 𝜃𝜃𝜃𝜃�. (77) 

Now we can write |𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)� in terms of |𝜈𝜈𝜈𝜈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(0)�. 
Putting Eqs. (75a), (76b), and (77) together, we have 

 �
𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)� =  Λ � 𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔1𝐸𝐸𝐸𝐸       0 

        0        𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔2𝐸𝐸𝐸𝐸
� Λ† �

𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)
𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(0)�. (78) 

Writing out the matrix multiplication is a bit of work; to 
simplify the result it helps to use Eq. (62), 𝜔𝜔𝜔𝜔2 =  𝜔𝜔𝜔𝜔1 +  𝛿𝛿𝛿𝛿. 
The top component of Eq. (78) is, in Dirac bracket 
notation, 

 |𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)⟩  = 

𝑒𝑒𝑒𝑒−𝜔𝜔𝜔𝜔1𝐸𝐸𝐸𝐸 �𝑈𝑈𝑈𝑈|𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)⟩ −  𝑖𝑖𝑖𝑖 sin(2𝜃𝜃𝜃𝜃) sin �
𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡
2 � |𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(0)�� 

(79a) 

where 𝑈𝑈𝑈𝑈 ≡ cos2𝜃𝜃𝜃𝜃 +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿sin2𝜃𝜃𝜃𝜃. The bottom component of 
Eq. (78) is 

 |𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)� = 

𝑒𝑒𝑒𝑒−𝜔𝜔𝜔𝜔2𝐸𝐸𝐸𝐸 �−𝑖𝑖𝑖𝑖 sin2𝜃𝜃𝜃𝜃 sin �𝛿𝛿𝛿𝛿𝐸𝐸𝐸𝐸
2
� |𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)⟩ +  𝑈𝑈𝑈𝑈|𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(0)��. 

(79b) 

Let a neutrino start out as an electron neutrino at t = 
0. The amplitude for it to become a muon neutrino at time 
t > 0 follows by multiplying �𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)| of Eq. (79b) with |𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)⟩ 
and using the orthonormality of the flavor states; 
therefore, 

 �𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(0)�𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)�  =  𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 sin(2𝜃𝜃𝜃𝜃)sin �
𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡
2
� (80a) 

where 𝑖𝑖𝑖𝑖 = 𝜔𝜔𝜔𝜔1 + 𝛿𝛿𝛿𝛿
2
 . The corresponding probability follows, 

 
𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒→𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)  =  sin2(2𝜃𝜃𝜃𝜃)sin2 �

𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡
2
�. 

(80b) 

Similarly, the probability for a neutrino that is a muon 
neutrino at t = 0 to become an electron neutrino at t > 0 is 
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𝑃𝑃𝑃𝑃𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡) =  |�𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)�𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇(0)�|2 

  = sin2(2𝜃𝜃𝜃𝜃)sin2 �𝛿𝛿𝛿𝛿𝐸𝐸𝐸𝐸
2
�. 

(80c) 

If 𝛿𝛿𝛿𝛿 𝛿 0, in other words, if 𝑚𝑚𝑚𝑚1 ≠  𝑚𝑚𝑚𝑚2, then electron 
neutrinos and muon neutrinos can change back and forth 
into each other—neutrino oscillations occur [11].  The 
spatial period of the oscillation—how far a neutrino travels 
before it changes from one flavor to the other—can be 
found by using t = x/c to convert the neutrino’s travel time 
to the distance traveled. The wavelength 𝜆𝜆𝜆𝜆 of the 
oscillation can then be read off the phase in Eqs. (80), 
recognizing 𝛿𝛿𝛿𝛿 2𝑐𝑐𝑐𝑐⁄  as a wavenumber 𝑘𝑘𝑘𝑘 = 2π λ⁄ , which 
gives 

𝛿𝛿𝛿𝛿
2𝑐𝑐𝑐𝑐

=  
2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

. 
(81a) 

From Eq. (62), 𝛿𝛿𝛿𝛿 =  𝜔𝜔𝜔𝜔2 − 𝜔𝜔𝜔𝜔1, which by Eq. (50) says 

𝛿𝛿𝛿𝛿 =  
1

2𝐸𝐸𝐸𝐸𝐸
[(𝑚𝑚𝑚𝑚2𝑐𝑐𝑐𝑐2)2 − (𝑚𝑚𝑚𝑚1𝑐𝑐𝑐𝑐2)2]. (81b) 

Now Eq. (81a) gives, for the distance between neutrino 
flavor-changing events, 

𝜆𝜆𝜆𝜆 = 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝜋
𝐸𝐸𝐸𝐸

 (𝑚𝑚𝑚𝑚2𝑐𝑐𝑐𝑐2)2 − (𝑚𝑚𝑚𝑚1𝑐𝑐𝑐𝑐2)2
� 

(81c) 

 ≈ 1 × 10−5 m eV �
𝐸𝐸𝐸𝐸

 (𝑚𝑚𝑚𝑚2𝑐𝑐𝑐𝑐2)2 − (𝑚𝑚𝑚𝑚1𝑐𝑐𝑐𝑐2)2
�. 

Data for electron- and muon-type neutrinos says 
(𝑚𝑚𝑚𝑚2𝑐𝑐𝑐𝑐2)2 − (𝑚𝑚𝑚𝑚1𝑐𝑐𝑐𝑐2)2  ≈ 7.5 × 10−5 eV2. At 𝐸𝐸𝐸𝐸 = 20 MeV, 
these numbers give in Eq. (81c) a distance 𝜆𝜆𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1300 
km (780 miles) for electron-muon oscillations. The value 
of  (𝑚𝑚𝑚𝑚2𝑐𝑐𝑐𝑐2)2 − (𝑚𝑚𝑚𝑚1𝑐𝑐𝑐𝑐2)2 for muon- and tau-type neutrinos is 
2.4 × 10−3 eV2,  which at 20 MeV gives 𝜆𝜆𝜆𝜆𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 = 32 m. Data 
suggest that the mixing angle 𝜃𝜃𝜃𝜃 for electron-muon 
neutrino oscillations is about 33. 9∘ and about 45∘ for 
muon-tau oscillations [12]. 

How to Catch a Neutrino 

The Reines-Cowan and Davies experiments were 
sensitive to electron-type neutrinos. Other options were 
soon forthcoming. In 1974 Howard Georgi and Sheldon 
Glashow and others predicted proton decay as a 
consequence of “grand unified” theories, which put quarks 
and leptons in a common family and allowed transitions 
between them. These theories predict a proton lifetime on 

the order of 1031 years. We can’t wait for 1031 years to see 
if a proton decays in the reaction 𝑝𝑝𝑝𝑝 →  𝑒𝑒𝑒𝑒+ + 𝜋𝜋𝜋𝜋0, but in a 
collection of 1031 protons, there should be about one 
decay per year. A thousand tons of matter would have 
about 5 × 1032 protons and, if the theory is correct, about 
50 of them per year should decay [13]. Assemble a 
thousand tons of transparent matter (pure water), 
surround it with photomultiplier tubes, and watch for the 
Cherenkov radiation (light emitted by a charged particle 
moving at the speed v, where c/n < v < c with n the 
medium’s refractive index), a “shock wave” cone of light 
that can be detected by photomultiplier tubes. 

Several such detectors were built in the early 1980s, 
but the idea was not new. In 1954 Frederick Reines, 
Clyde Cowan, and Maurice Goldhaber, using part of the 
detector with which they detected the antineutrino two 
years later, put a lower bound of 1022 years on proton 
decay, and a 1974 proposal by Reines and William Kropp 
presciently envisioned a 10-kiloton proton decay 
detector—which was turned down for “lack of theoretical 
motivation” at that time [14].  Subtracting neutrino 
backgrounds offered a serious challenge to these 
experiments; for example, elastic scattering of neutrinos 
by electrons, 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒− → 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 +  𝑒𝑒𝑒𝑒−, could produce an 
electron with enough energy to emit Cherenkov radiation. 

So far proton decay has not been observed. But with 
such massive detectors in place that are sensitive to 
neutrino events, serendipitous results ensued. In 1998 a 
group working with a detector deep in a mine in 
Kamiokande, Japan, first published evidence for 
oscillations in “atmospheric neutrinos” [15], neutrinos 
produced when cosmic rays from the sun collide with 
nuclei in the upper atmosphere to produce muons and 
muon neutrinos. The discovery was made by “Super-
Kamiokande,” which uses Earth’s diameter as a baseline: 
solar or atmospheric neutrinos pass through us from 
above in the daytime and come up through the floor at 
night. Super-Kamiokande reported, “The number of the 
upward going neutrinos was only half of the number of the 
down going neutrinos. This is because the muon 
neutrinos passing through the earth turn into tau 
neutrinos” [14] (recall that the muon-tau oscillation length 
is quite short). Super-Kamiokande produced the first hard 
evidence for 𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇 neutrino oscillations in atmospheric 
neutrinos but not conclusive verification of oscillations in 
solar neutrinos.  

In 1984 the neutrino detection story took another turn 
when Herb Chen pointed out the advantages of using 
hydrogen-2 as the detector medium [16].  In a charged 
current interaction  (similar to the Homestake reaction, but 
with deuterons instead of chlorine nuclei), the neutrino 
collides with the neutron in hydrogen-2, turning it into a 
proton and electron: 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒 + H1

2 → 𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝 + 𝑒𝑒𝑒𝑒−.  Since E < 20  



SPRING 2023  RADIATIONS  27

MeV for solar neutrinos and the muon mass = 106 
MeV/c2, only electron neutrinos participate here, although 
this reaction is detectable since the electron carries 5–15 
MeV of energy. But there is also a neutral current 
interaction that can proceed with any lepton flavor: 

𝜈𝜈𝜈𝜈𝜌𝜌𝜌𝜌 +  H1
2 → 𝑛𝑛𝑛𝑛 + 𝑝𝑝𝑝𝑝 +  𝜈𝜈𝜈𝜈𝜌𝜌𝜌𝜌 (82) 

where 𝜌𝜌𝜌𝜌 =  𝑒𝑒𝑒𝑒, 𝜇𝜇𝜇𝜇, or 𝜏𝜏𝜏𝜏. This possibility led to the founding 
of the Solar Neutrino Observatory (SNO) near Sudbury, 
Ontario. SNO is a 12-meter-diameter acrylic sphere 
containing 1000 tons of heavy water, surrounded by 
photomultiplier tubes to detect Cherenkov radiation. The 
heavy water was loaned to the experiment by Atomic 
Energy of Canada. The sphere containing heavy water 
was surrounded by another sphere containing ordinary 
water. 
  In a reaction (82) the neutron that emerges can react 
with a second deuteron to make helium-3 and a 6 MeV 
photon: 𝑛𝑛𝑛𝑛 + H1

2 → He33 +  𝛾𝛾𝛾𝛾 (6 MeV). One could collect 
the helium (analogous to how the Homestake experiment 
collected the noble gas argon), but the photons are 
detected immediately by the array of photomultiplier 
tubes. Neutrons that escape the heavy water sphere enter 
the shell of ordinary water, where some of them collide 
with hydrogen-1 to drive the reaction  𝑛𝑛𝑛𝑛 + H1

1 → H1
2 +

 𝛾𝛾𝛾𝛾(2.2 MeV) to produce more signals for the 
photomultiplier tubes. The SNO results of 2001 were firm 
evidence for neutrino oscillations in solar neutrinos [17]. 

The 2015 Nobel Prize in Physics was awarded to 
Arthur McDonald, director of SNO, and Takaaki Kajita, 
leader of the group at Kamiokande, for the observation of 
neutrino oscillations. The humble coupled oscillator 
touches a lot of physics! 

References 
[6] The energies released in beta decays tend to be a few MeV.
Compared to the electron’s mass of 0.511 MeV/c2, one might
want to use the relativistic expression for the electron’s kinetic
energy when relating it to momentum, whereas the neutron and

proton masses are ≈ 1 GeV/c2, so Newtonian kinetic energy 
can be used for them. 
[7] “The Reines-Cowan Experiments: Detecting the Poltergeist,”
Los Alamos Sci. 25 (1997): 4–27. See https://library.lanl.gov/cgi-
bin/getfile?00326606.pdf. The title refers to experiments in the
plural because it also gives a thorough description of Reines’s
original idea (1951) to bury a neutrino detector deep under
ground zero of a nuclear bomb test site.
[8] The three families or “flavors” of quarks are the “up” u and
“down” d; “charm” c and “strange” s; and “top” t and “bottom” b. 
Ordinary matter (what we see on the Periodic Table) is made of 
“first-generation” quarks and leptons: u and d quarks (proton = 
uud, neutron = ddu), and the leptons 𝑒𝑒𝑒𝑒− and 𝜈𝜈𝜈𝜈𝑒𝑒𝑒𝑒. The second 
generation consists of c, s, and the muon and 𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇; the third 
generation of t, b, and the tau and 𝜈𝜈𝜈𝜈𝜏𝜏𝜏𝜏. 
[9] André de Gouvêa and Petr Vogel, “Lepton Flavor and
Number Conservation, and Physics Beyond the Standard
Model,” arXiv:1303.4097v2[hep-ph], 29 Mar 2013, 1–27. A lot
depends on whether neutrinoless double beta decay occurs.
[10] Bruno Pontecorvo, "Mesonium and Anti-Mesonium," Zh.
Eksp. Teor. Fiz. 33 (2 Feb. 1957): 549–551. Translated and
reproduced in Sov. Phys. JETP 6 (2 Feb. 1957): 429–431.
[11] The most common neutrino oscillations seem to occur
between muon and tau neutrinos.
[12] Data from K. A. Olive et al., Particle Data Group (2010).
These figures (rounded) are also presented in Paul Tipler and
Robert Llewellyn, Modern Physics (San Francisco: Freeman,
2008), 610.
[13] Howard Georgi and Sheldon Glashow, “Unity of All
Elementary Particle Forces,” Phys. Rev. Lett. 32 (1974): 438;
Howard Georgi, “A Unified Theory of Elementary Particles and
Forces,” Sci. Am. (April 1981): 48–63.
[14] “Underground Experiments Will Look for Proton Decay,”
Physics Today (Jan. 1980): 17–19.
[15] Y. Fukuda et al., Super-Kamiokande Collaboration,
“Evidence for Oscillation of Atmospheric Neutrinos,” Phys. Rev.
Lett. 81, no. 8 (1998): 1562–1567; Super-K website: http://www-
sk.icrr.u-tokyo.ac.jp/sk/sk/neutrino-e.html.
[16] Herbert Chen, “Direct Approach to Resolve the Solar-
Neutrino Problem,” Phys. Rev. Lett. 55, no. 14 (1985): 1534–
1536. 
[17] SNO’s homepage: https://falcon.phy.queensu.ca/SNO/.
See also
https://en.wikipedia.org/wiki/Sudbury_Neutrino_Observatory.

Credit: XKCD


